
Practice test for midterm 2

October 23, 2Θ19

1 Functions

2 Functions

▶ Write a function which takes in two int parameters and returns their average. (Remem-
ber that if a function takes in parameters, it does not need to use cin, and if it returns a
value it does not need cout.) Write the implementation (definition) of this function, write its
declaration, and write an example of a function call using this function.

// Declaration
int avg(int x, int y);

// Definition
int avg(int x, int y) {

return (x + y) / 2;
}

// Function call
cout << avg(5,7) << endl;

▶ Write a functionwhich prompts the user to enter apositive (> 0) integer andwhich returns
the value the user entered. If the user does not enter a positive integer, the function should
return Θ.

int read_pos() {
int x;
cout << "Enter a positive integer: ";
cin << x;

1

if(x > 0)
return x;

else
return 0;

// Could also be written shorter as
// return x > 0 ? x : 0;

}

▶ Write a functionwhich prompts the user to enter apositive (> 0) integer andwhich returns
the value the user entered. If the user does not enter a positive integer, the function should
use a loop to repeatedly prompt the user until they do.

int read_pos() {
int x = -1;
while(x ఖగ 0) {

cout << "Enter a positive integer: ";
cin >> x;

}
return x;

}

You could also use a do-while loop for this.

▶ Write a function which takes a char parameter and returns true if it is a numeric character
(Θ through 9) and false otherwise.

bool is_numeric(char c) {
return c ఘగ '0' && c ఖగ '9';

}

(This function is available built-in with #include <cctype> as isdigit().)

▶ Using the function from the previous, write a function which takes a string parameter and
returns true if every character in it is numeric (use a loop).

// Note: this is an *overload* of the previous function
bool is_numeric(string s) {

for(int i = 0; i < s.length(); ++i)
if(!is_numeric(s.at(i)))

return false;

return true;
}

2

// Using a ranged-for loop:
bool is_numeric(string s) {

for(char c : s)
if(!is_numeric(c))

return false;

return true;
}

▶ What will the following program print as output?

int f(int x) {
x ௏= 3;
cout << x << endl;
return x;

}

int g(int y) {
cout << y - 1 << endl;
return f(y) + 1;

}

int h(int x, int y) {
cout << x + y << endl;
x = 1;
return x * y;

}

int main() {
int x = 3, y = 5;
cout << f(h(g(x), f(y))) << endl;
return 0;

}

Output:

15
2
9
25
45
45

3

3 Vectors and Arrays

▶ Translate the vector variable declaration

vector<string> colors = {"red", "orange", "yellow", "green",
"blue", "indigo", "violet" };

into an array variable declaration.

string colors[] = {"red", "orange", "yellow", "green",
"blue", "indigo", "violet" };

▶ Given a vector v:

vector<int> v;

Draw the contents of the vector that will result after the following code is executed:

v.resize(5,10);
v.pop_back();
v.insert(v.begin() + 2, 13);
v.push_back(-1);
v.erase(v.begin() + 0);
v.push_back(-4);

Index Tabular
Θ 1Θ
1 13
2 1Θ
3 1Θ
4 -1
5 -4

▶ Write a function that will read in floats from the user until they press Ctrl-D and then
return a vector containing every value entered.

vector<float> read_floats() {
vector<float> vf;
float x;
while(cin >> x)

vf.push_back(x);

return vf;
}

4

▶ Write a function which takes a vector<int> parameter and which returns true if the vector
contains any odd numbers, and false otherwise.

bool contains_odd(vector<int> v) {
for(int x : v)

if(x % 2 ఋఌ 1)
return true; // Found an odd number

return false; // No odds found
}

▶ Write a function which takes a int n parameter and which returns a vector containing the
integers from 1 to n. E.g., if n = 4 then the vector returned should contain {1,2,3,4}. If the
parameter is Θ or negative the returned vector should be empty.

vector<int> count_up(int n) {
vector<int> out;
for(int i = 1; i < n; ++i)

out.push_back(i);

return out;
}

▶ What are the restrictions that arrays have, compared to vectors?

Arrays cannot change size, cannot be empty, and the size must be a constant (not a variable
or an expression).

4 References, Pointers, and Dynamic Memory

▶ What will the values of the variables a, b, c be after the following code executes?

int a = 5, b = 6, c = 7;
int& d = b;
int& e = a;
a += b + d;
b ௏= c - e;
c -= a + b - d - e;
d ௏= 2;
e = a * b + c * d - e;

5

a = −2897, b = −120, c = 7

(d = −120 as it’s a reference to b, and e = −2897 as its a reference to a.)

▶ What are the differences between references and pointers?

References cannot change during their scope, and must refer to something. Pointers can
change what they point to, and can be set to point to nothing at all (nullptr).

▶ The last line of this code will trigger an error; why is this?

int* p = new int();
*p = 12;
delete p;
*p = 13;

If *p is delete-d, then dereferencing p is accessing memory that no longer belongs to the
program, and causes undefined behavior.

▶ Use reference parameters to write a function clamp:

void clamp(int& x, int low, int high);

The effect should be to constrain the value of x to be in the range [low, high]. If x < low then
set x to low; if x > high then set x to high, otherwise leave x unchanged.

void clamp(int& x, int low, int high)
if(x > high)

x = high;
else if(x < low)

x = low;

// Or in one line:
x = x < low ? low :

x > high ? high :
x ;

▶ For each of the following variables, give its type ”in English”. E.g., vector<int> would be
”vector of ints”.

int x = 1; // int
int& y = x; // ref. to int
int* z = &y; // pointer to int

6

int*& a = z; // ref. to pointer to int
int** b = &a; // pointer to pointer to int
vector<int*> vp; // vector of pointers to ints
vector<int*>& vr = vp; // ref. to vector of pointers to ints
vector<int*>௏ vpp = &vp; // pointer to vector of poitners to ints

// Pointer to pointer to vector of pointers to ints
vector<int*>௏௏ vppp = &vpp;

▶ What will be the final values of the variables a, b, c after the following code fragment is
executed:

int a = 1, b = 2, c = 4;
int* p = &c;
int* q = &b;
int* r = &a;
*p = b;
*r = a;
p = r;
r = q;
q = &a;
*p ௏= *q;
*q += *r + a;
*r -= *p;

a = 4, b = −2, c = 2

▶ What is the difference between delete and delete[], and when is each used?

delete[] is used to delete dynamically allocated arrays, created via new T[] (where T is a type).
delete is used for deleting single values, dynamically allocated.

▶ Write a function

int* read_ints(int n);

which reads in exactly n integers from the user and then returns a pointer to a dynamically
allocated array containing the values entered.

int* read_ints(int n) {
int* data = new int[n];
for(int i = 0; i < n; ++i) {

int x;
cin >> x;

Ν

data[i] = x;
}

return data;
}

8

