
Practice test for midterm 4

May 15, 2Θ19

1 Recursion

▶ Here is a recursive function:

void f(string s) {
if(s.empty())

return;
else {

cout << s.back();
s.pop_back();
f(s);

}
}

• Label the parameter of recursion, the base case, and the recursive case.

• Draw the recursion tree for the function call f("Hello").

• What does this function do?

▶ Here is a recursive function that is intended to count the number of 0’s in a vector, but
some parts are missing:

int count0s(vector<int> vs) {
if(vs.empty())

return
else if(vs.back() == 0)

return
else

return
}

1



Fill in the missing portions to make the function work correctly.

▶ In class we looked at a pair of mutually recursive functions is_even and is_odd:

bool is_even(int x) {
if(x == 0)

return true;
else if(x == 1)

return false;
else

return is_odd(x-1);
}

bool is_odd(int x) {
if(x == 0)

return false;
else if(x == 1)

return true;
else

return is_even(x-1);
}

Using a similar technique, write threemutually recursive functionswhich should test whether
a number is divisible by 3:

// Divides with remainder 0
bool div3_0(int x) {

// Divides with remainder 1
bool div3_1(int x) {

// Divides with remainder 2
bool div3_2(int x) {

▶ Write a recursive function length which determines the length of a string, without using
.length():

int length(string s) {

▶ Write a recursive function is_palindrome which takes a string and returns true if it is a
palindrome (the same backwards and forwards):

bool is_palindrome(string s) {

2 Inheritance and polymorphism

Several of the problems in this section will refer to the following collection of classes:

class item {
public:
float weight;
string name;

};

class weapon : public item {
public:
float damage;

2



int skill;
};

class sword : public weapon {
public:
float length;

};

class armor : public item {
public:
float av;
int skill;

};

class potion : public item {
public:
float amount;
int attr; // 0 = health, etc

};

▶ Assuming we have the following variables:

weapon cudgel;
sword scimitar;
armor shield;
potion poison;

which of the following data members are valid, and which will cause an error?

• cudgel.name

• scimitar.skill

• poison.weight

• poison.skill

• shield.skill

• cudgel.av

• shield.name

• scimitar.weight

▶ Suppose we add the variables

3



weapon w1 = scimitar;
weapon& w2 = scimitar;

What is the difference between these two? What will change if we execute the assignments:

w1.weight = 10;
w2.weight = 20;

▶ Suppose we add a virtual method .use() to these classes:

class item {
public:
...
virtual bool use() {

return false;
}

};

bool weapon::use() {
cout << "Attack for "

<< damage << endl;
return false;

}

bool potion::use() {
cout << "You drink the potion"

<< endl;
return true;

}

(The idea is that use returns true if the item is “used up” by being used.)

What will be printed by each of the following calls to use:

cudgel.use();

scimitar.use();

shield.use();

w1.use();

4



w2.use();

▶ Write a set of classes with inheritance intended to model things you might put in a salad.
A base class salad_ingredient is provided for you.

class salad_ingredient { };

▶ Suppose we want to now create a class salad that can contain any number of different
ingredients. Will the following class definition work? If not, why not?

class salad {
public:
vector<salad_ingredient> ingredients;

};

▶ Explain the difference between IS-A and HAS-A relationships, and give examples of
classes with each kind of relationship.

3 Advanced topics

▶ Here is a class for colors:

class color {
public:
string name;
float r,g,b;

};

Overload the << insertion operator so that we can print colors to cout naturally.

▶ Overload the equality == and inequality != operators on color (either as normal functions
or member functions inside the class) so that we can compare colors.

▶ Write a template function is_sorted which takes a vector of any type of elements and
returns true if they are sorted (if each element is ≤ the following one.)

▶ What modification(s) would you need to make to the function from the previous function
to allow it to work on both strings and vectors? Write the modified function.

▶ Using the functional programming building-blocks we looked at in class:

5



template<typename T, typename R>
R reduce(vector<T> vs, R start, function<R(R,T)> fn)

template<typename T, typename R>
vector<R> map(vector<T> vs, function<R(T)> fn)

template<typename T>
vector<T> filter(vector<T> vs, function<bool(T)> pred)

and a vector v:

vector<float> v = ...;

write loop-free code which will perform the following operations on v:

1) Square every element

2) Remove any elements that are > 100

3) Sum the remaining elements

(You can write named functions for the function parameters, or you can use the anonymous
function syntax we showed in class.)

6


