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Erdős problem
on covering
systems

Part 4:
Sierpiński and
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Part 2. Erdős
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About Paul Erdős.

Hungarian mathematician, 1913-1996.
Interested in combinatorics, graph theory, number
theory, classical analysis, approximation theory, set
theory, probability theory...
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More on Paul Erdős.

Wrote/co-wrote over 1400 research papers.
Erdős number.
Erdős problems: issued “bounties” for problems that he
thought were interesting or for which he wanted to
know the solution.

Erdős resources:
1 The man who loved only numbers, book by Paul

Hoffman, 1998, (based on his Atlantic Monthly article
from 1989).

2 N is a Number: A portrait of Paul Erdős, film by George
Csicsery, 1993 (also based on the Atlantic Monthly
article).

3 And what is your Erdős number?", Caspar Goffman,
the American Mathematical Monthly, 1969.
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Erdős and covering systems in research

Question: (de Polignac, 1849)
Is it the case that every sufficiently large odd integer > 1 can
be written as the sum of a prime number and a power of 2?

Some small counter examples include: 127, 905.
(Romanoff) A positive proportion of the integers may be
expressed this way.
(van der Corput) The exceptions form a set of positive
density.
(Erdős) Constructed an arithmetic progression of odd
integers not representable in this way.
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and covering
systems in
research

Part 3. An
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Background: (from Number Theory 101)

Def.: Congruent
The integers a and b are congruent modulo the natural
number n > 1 if there exists an integer, z such that

a− b = zn.

If so, we write
a ≡ b (mod n).

For example,

77 ≡ 7 (mod 10)

500 ≡ 1700 (mod 1200)

3 ≡ 58 (mod 5)

143 ≡ 0 (mod 11).
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Background: (from Number Theory 101)

Def.: Covering system
A covering system or covering, for short, is a finite system of
congruences

n ≡ ai (mod mi), 1 < i ≤ t ,

such that every integer satisfies at least one of the
congruences.
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Example of a covering.

For example, the congruences

n ≡ 0 (mod 2)

n ≡ 1 (mod 3)

n ≡ 3 (mod 4)

n ≡ 5 (mod 6)

n ≡ 9 (mod 12)

form a covering of the integers.
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More background.

Def.: Chinese Remainder Theorem
A system of congruences has a unique solution if the moduli
are pairwise relatively prime.

For example: Can we solve for x in the following system?

x ≡ 3 mod 9
x ≡ 5 mod 10
x ≡ 2 mod 11

Yes, because {9,10,11} are pair-wise, relatively prime. We
get:

x ≡ 255 mod 990

(Note: 990 = 9× 10× 11)
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Erdős problem
on covering
systems

Part 4:
Sierpiński and
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Back to de Polignac’s question.

Question: (de Polignac, 1849)
Is it the case that every sufficiently large odd integer > 1 can
be written as the sum of a prime number and a power of 2?

de Polignac asked about odd numbers of the form

x = p + 2n.

Erdős instead thought about writing primes in the form

p = x − 2n,

and changed the question to:

Question′: (Erdős)
Is it possible to find an integer x such that x − 2n is not
prime for all (non-negative) integers n?
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Erdős’ approach to de Polignac’s conjecture

This led to the “sub-question”: For which n and for which x
would x − 2n be divisible by 3?

⇔ x −2n = 3z ⇔ x −2n ≡ 0 (mod 3) ⇔ x ≡ 2n (mod 3)

Let us take powers of 2 (mod 3)

20 ≡ 1 (mod 3)
21 ≡ 2 (mod 3)
22 ≡ 4 ≡ 1 (mod 3)
23 ≡ 8 ≡ 2 (mod 3)

We see that:
2n 6≡ 0 (mod 3).

For even powers of 2, 2n ≡ 1 (mod 3).

For odd powers of 2, 2n ≡ 2 (mod 3).
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Erdős’ approach to de Polignac’s conjecture

This led to the “sub-question”: For which n and for which x
would x − 2n be divisible by 3?

We have that if,

n ≡ 0 (mod 2) (even) and x ≡ 1 (mod 3) then x − 2n is
divisible by 3.

OR
n ≡ 1 (mod 2) (odd) and x ≡ 2 (mod 3) then x − 2n is
divisible by 3.
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Erdős’ approach to de Polignac’s conjecture

Erdős’ strategy was to continue along these lines and try to
find conditions on n and on x that would ensure that x − 2n

would be divisible by primes from a given set (that would
include 3).

He found the following relations:

n ≡ 0 (mod 2) and x ≡ 1 (mod 3) ⇒ 3|x − 2n

n ≡ 0 (mod 3) and x ≡ 1 (mod 7) ⇒ 7|x − 2n

n ≡ 1 (mod 4) and x ≡ 2 (mod 5) ⇒ 5|x − 2n

n ≡ 3 (mod 8) and x ≡ 8 (mod 17) ⇒ 17|x − 2n

n ≡ 7 (mod 12) and x ≡ 11 (mod 13) ⇒ 13|x − 2n

n ≡ 23 (mod 4) and x ≡ 121 (mod 241) ⇒ 241|x − 2n
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Erdős’ approach to de Polignac’s conjecture

n ≡ 0 (mod 2) and x ≡ 1 (mod 3) ⇒ 3|x − 2n

n ≡ 0 (mod 3) and x ≡ 1 (mod 7) ⇒ 7|x − 2n

n ≡ 1 (mod 4) and x ≡ 2 (mod 5) ⇒ 5|x − 2n

n ≡ 3 (mod 8) and x ≡ 8 (mod 17) ⇒ 17|x − 2n

n ≡ 7 (mod 12) and x ≡ 11 (mod 13) ⇒ 13|x − 2n

n ≡ 23 (mod 24) and x ≡ 121
(mod 241) ⇒ 241|x − 2n

We observe that the set of congruences describing n form a
covering system.

We observe that the set of congruences describing x can be
combined solved using Chinese Remainder Theorem.
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Erdős’ arithmetic progression of
counterexamples

By the Chinese Remainder Theorem, we get

x ≡ 7629217 (mod 11184810),

where
11184810 = 2 · 3 · 5 · 7 · 13 · 17 · 241.

This gives us the Erdős’ arithmetic progression of
counterexamples to de Polignac’s conjecture.

k = 7629217± 11184810z, for z ∈ Z.
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Erdős’ arithmetic progression of
counterexamples

There exists an arithmetic progression of odd integers x ,
that simultaneously satisfy the system of congruences

x ≡ 1 (mod 3)
x ≡ 1 (mod 7)
x ≡ 2 (mod 5)
x ≡ 8 (mod 17)
x ≡ 11 (mod 13)
x ≡ 121 (mod 241)
x ≡ 1 (mod 2),

such that x −2n is composite (not prime) for all non-negative
integers n because x − 2n will be divisible by at least one of
the primes from the set {3, 5, 7, 13, 17, 241}. �
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Erdős problem
on covering
systems

Part 4:
Sierpiński and
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Question: What next?

Answer: We try to generalize.

Recall, Erdős constructed an arithmetic progression of odd
integers x such that x − 2n was composite for all
non-negative integers n.

Def.: Sierpiński number
A Sierpiński number is a positive odd integer k with the
property that k · 2n + 1 is composite for all positive integers
n.
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Erdős problem
on covering
systems

Part 4:
Sierpiński and
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Sierpiński numbers

Def.: Sierpiński number
A Sierpiński number is a positive odd integer k with the
property that k · 2n + 1 is composite for all positive integers
n.

Sierpiński (1960) observed the following implications:

n ≡ 1 (mod 2), k ≡ 1 (mod 3) =⇒ k · 2n + 1 ≡ 0 (mod 3)
n ≡ 2 (mod 4), k ≡ 1 (mod 5) =⇒ k · 2n + 1 ≡ 0 (mod 5)
n ≡ 4 (mod 8), k ≡ 1 (mod 17) =⇒ k · 2n + 1 ≡ 0 (mod 17)
n ≡ 8 (mod 16), k ≡ 1 (mod 257) =⇒ k · 2n + 1 ≡ 0 (mod 257)
n ≡ 16 (mod 32), k ≡ 1 (mod 65537) =⇒ k · 2n + 1 ≡ 0 (mod 65537)
n ≡ 32 (mod 64), k ≡ 1 (mod 641) =⇒ k · 2n + 1 ≡ 0 (mod 641)
n ≡ 0 (mod 64), k ≡ −1 (mod 6700417) =⇒ k · 2n + 1 ≡ 0 (mod 6700417).
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Sierpiński numbers

The moduli appearing in the congruences involving k are 7
primes, the first (perhaps only) five Fermat primes
Fn = 22n

+ 1 for 0 ≤ n ≤ 4 and the two prime divisors of F5.

We add the condition k ≡ 1 (mod 2) to ensure that k is odd.

Then the Chinese Remainder Theorem implies that there
are infinitely many Sierpiński numbers given by

k ≡ 15511380746462593381

(mod 2 · 3 · 5 · 17 · 257 · 65537 · 641 · 6700417).
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Smallest Sierpiński number

In 1962, Selfridge (unpublished) found what is believed to
be the smallest Sierpiński number, namely k = 78557.

His argument is based on the following implications:

n ≡ 0 (mod 2), k ≡ 2 (mod 3) =⇒ k · 2n + 1 ≡ 0 (mod 3)
n ≡ 1 (mod 4), k ≡ 2 (mod 5) =⇒ k · 2n + 1 ≡ 0 (mod 5)
n ≡ 3 (mod 9), k ≡ 9 (mod 73) =⇒ k · 2n + 1 ≡ 0 (mod 73)
n ≡ 15 (mod 18), k ≡ 11 (mod 19) =⇒ k · 2n + 1 ≡ 0 (mod 19)
n ≡ 27 (mod 36), k ≡ 6 (mod 37) =⇒ k · 2n + 1 ≡ 0 (mod 37)
n ≡ 1 (mod 3), k ≡ 3 (mod 7) =⇒ k · 2n + 1 ≡ 0 (mod 7)
n ≡ 11 (mod 12), k ≡ 11 (mod 13) =⇒ k · 2n + 1 ≡ 0 (mod 13).

There have been attempts to prove that 78557 is the
smallest Sierpiński number.

In this regard, the web page

http://www.seventeenorbust.com

contains the current up-to-date information.
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Smallest Sierpiński number

As of this writing, there remain 6 values of k < 78557 which
are unresolved by the Seventeen or Bust project, namely

10223, 21181, 22699, 24737, 55459, 67607.

The most recent value of k < 78557 to have been
eliminated was 33661, by Sturle Sunde’s computer, on
October 30, 2007.
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Other generalizations.

Def.: Riesel number
A Riesel number is a positive odd integer k with the
property that k · 2n − 1 is composite for all positive integers
n.

The smallest known Riesel number is 509203, due to Riesel
(1956).

There have been attempts to prove that 509203 is the
smallest Riesel number.

http://www.prothsearch.net/rieselprob.html

As of this writing there remain 64 unresolved candidates, of
these 2293 is the smallest.
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More generalizations

Conjecture (Chen)

For every positive integer r , there exist infinitely many
positive odd integers k such that the number k r 2n + 1 has at
least two distinct prime factors for each positive integer n.

Conjecture (Chen)

For every positive integer r , there exist infinitely many
positive odd integers k such that the number k r − 2n has at
least two distinct prime factors for each positive integer n.
(Equivalent to k r 2n − 1.)
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Part 2. Erdős
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Chen’s conjectures.

Chen (2002) resolves each conjecture in the case that r is
odd and in the case that r is twice an odd number and 3 - r .
As he notes, the least r for which his arguments do not
apply are r = 4 and r = 6.

Conjecture 1 is true in general and that Conjecture 2 holds
in the special cases r = 4 and r = 6.

Theorem (Filaseta, Finch, K., 2008)

For every positive integer R, there exist infinitely many
positive odd numbers k such that each of the numbers

k2n + 1, k22n + 1, k32n + 1, . . . , kR2n + 1

has at least two distinct prime factors for each positive
integer n.
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The minimum modulus problem

Open problem: (Erdős, $1000)
For every natural number N > 1 does there exist a covering
system with distinct moduli all ≥ N?

Personal attempts:

1 Summer 2008, with Kelly Bickell, Michael Firrisa, Juan
Pablo Ortiz, and Kristen Pueschel.

We made it to N = 14.

2 Summer 2009, with Tobit Raff.

We made it to N = 11.
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The minimum modulus problem: results

Open problem: (Erdős, $1000)
For every natural number N > 1 does there exist a covering
system with distinct moduli all ≥ N?

Early results:
N = 3: Erdős.
N = 9: Churchhouse, 1968.
N = 14: Selfridge.
N = 18: Krukenburg (Ph.D. Thesis), 1971.
N = 20: Choi, 1971.
N = 24: Morikawa, 1981.
N = 25: Gibson (Ph.D. Thesis) 2008.
N = 36, 40: Nielsen, 2009.
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The minimum modulus problem: techniques

For small N, examples can be worked out by hand, but
quickly computers come into play.

Churchouse’s result (N=9) came from using computers and
a greedy algorithm. The LCM of the moduli was

604, 800 = 2733527.

Krukenburg and Choi’s results did not use computers. The
LCM of Krukenburg’s moduli was

475, 371, 719, 222, 400 = 2733527211213217219.
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Erdős problem
on covering
systems

Part 4:
Sierpiński and
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Gibson’s techniques

Gibson uses:

a greedy algorithm (like Churchhouse)
the notion of an “almost covering” (like Morikawa who in
turned used ideas of Krukenburg)
“random covering” (like Erdős)
extensive computing.

The LCM of the moduli used primes up to 2017.
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Nielsen’s techniques

Nielsen uses a graph theoretic approach, representing
covering systems as trees, and introducing new primes, as
necessary to “plug” holes.

The LCM of the moduli uses primes up to 103.

Initially, he used the primes in order.

However, the referee noted that sometimes it was more
efficient to use certain primes out of order. This allowed for
the improvement from N = 36 to N = 40.

There was very little wiggle room, and thus, fears a
“negative solution” for the minimum modulus problem.
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Sierpiński + Riesel?

Question: Do here exist numbers that are simultaneously
Sierpiński and Riesel numbers?

Answer: Yes. (Cohen and Selfridge, 1975).

k = 47867742232066880047611079



Covering
systems:

number theory
in the spirit of
Paul Erdős
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Part 2. Erdős
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Sierpiński + Riesel?

However, folks (computer scientists) didn’t read their paper.
So they offered their results.

Brier (1998) k = 29364695660123543278115025405114452910889

Gallot (2000) k = 623506356601958507977841221247

Gallot (2000) k = 3872639446526560168555701047

Gallot (2000) k = 878503122374924101526292469

E. Vantieghem (2010) k = 47867742232066880047611079

Filaseta, Finch and K. (2008) k = 143665583045350793098657

For more information on this problem, visit:

http://www.primepuzzles.net/problems/prob_029.htm
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Mark Kozek

Part 1. About
Paul Erdős
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Thank you

Any Questions?
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In Memoriam

John L. Selfridge
1927-2010


	Part 1. About Paul Erdos
	 Part 2. Erdos and covering systems in research
	Part 3. An Erdos problem on covering systems
	Part 4: Sierpinski and Riesel revisited

