§9.3 The INTEGRAL TEST; p-Series

In this and the following section, you will study several convergence tests that apply to series with positive terms.

Theorem 9.10 The Integral Test

If f is positive, continuous, and decreasing for $x \geq 1$ and $a_n = f(n)$, then

$$
\sum_{n=1}^{\infty} a_n \quad \text{and} \quad \int_{1}^{\infty} f(x) \, dx
$$

either both converge or both diverge.

Note 1: When using the Integral Test, it’s NOT necessary to start at $n = 1$. For instance, when testing the series $\sum_{n=4}^{\infty} \frac{1}{(n-3)^2}$, we’d use the improper integral $\int_{4}^{\infty} \frac{1}{(x-3)^2} \, dx$.

Example 1: Discuss the convergence / divergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$

Solution:
Note 2: The series doesn’t always converge to the same value as that of the improper integral. Note that the Integral Test doesn’t state the limit value to which the series converges!!!

Note 3: It’s also NOT necessary that function f' be always decreasing. **What’s important is that f be ULTIMATELY decreasing** [i.e., f is decreasing for $x \geq N$ for some constant N].

Example 2: Test the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ for convergence / divergence.

Solution:
p-Series

Def: A series of the form \(\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \ldots \) is called a *p-series*, where \(p \) is a positive constant.

For \(p = 1 \), the series \(\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots \) is called the **harmonic series**.

A general harmonic series is of the form \(\sum \frac{1}{an+b} \).

The *p*-series has a simple arithmetic test for convergence or divergence.

THEOREM 9.11 Convergence of *p*-Series

The *p*-series

\[
\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots
\]

1. converges if \(p > 1 \), and
2. diverges if \(0 < p \leq 1 \).

So, by the definition of the harmonic series, it’s divergent.

Example 3: Discuss the convergence / divergence of each series.

a) \(\sum_{n=1}^{\infty} \frac{2}{n^3} \)

b) \(1 + \frac{1}{\sqrt[3]{4}} + \frac{1}{\sqrt[3]{9}} + \frac{1}{\sqrt[3]{16}} + \ldots \)
§9.4 COMPARISONS of SERIES

The two tests you study in this section allow you to compare one series having complicated terms with a simpler series whose convergence or divergence is known (or can be determined quite easily!!!).

Note 1: Remember that both parts of the Direct Comparison Test require $0 < a_n \leq b_n$ for all positive terms. Informally, this test says the following about the 2 series with positive terms:

1. If the “larger” series converges, the “smaller” series must also converge.
2. If the “smaller” series diverges, the “larger” series must also diverge.

Note 2: When choosing a series for comparison, you may disregard all but the dominant term / the Highest Powers of n in both the numerator and denominator.

Example 1: Discuss the convergence / divergence of the series $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n}$

Solution:
Example 2: Determine the convergence / divergence of \(\sum_{n=1}^{\infty} \frac{1}{2 + \sqrt{n}} \)

Solution:

The given series resembles \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) (which is a divergent \(p \)-series with \(p = \frac{1}{2} < 1 \)).

But \(\frac{1}{2 + \sqrt{n}} < \frac{1}{\sqrt{n}} \) for all \(n \geq 1 \), does not meet the requirement of divergence (part 2 of Direct Comparison Test). So, try a different series: the harmonic series \(\sum_{n=1}^{\infty} \frac{1}{n} \) (which is also divergent!).

And, term-by-term comparison yields \(\frac{1}{n} \leq \frac{1}{2 + \sqrt{n}} \) for all \(n > 4 \). (Do you see?)

\(\therefore \) By the Direct Comparison Test part 2, \(\sum_{n=1}^{\infty} \frac{1}{2 + \sqrt{n}} \) diverges.

Also read Examples 1 & 2 in textbook, pg. 625.

Now, a given series may closely resemble a \(p \)-series or a geometric series, yet you cannot establish the term-by-term comparison required to apply the Direct Comparison Test.

\(\rightarrow \) Under these circumstances, you may be able to apply a second comparison test called the Limit Comparison Test.

THEOREM 9.13 Limit Comparison Test

Suppose that \(a_n > 0, b_n > 0 \), and

\[\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = L \]

where \(L \) is finite and positive. Then the two series \(\sum a_n \) and \(\sum b_n \) either both converge or both diverge.

Note 3: Remember that the limit value \(L \) must be finite and positive in order for you to apply the Limit Comparison Test and have the correct conclusion. If \(L = 0 \), then you need to change the comparison series \(\{b_n\} \).
Example 3: Test the series $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ for convergence or divergence.

Solution:

Example 4: Determine the convergence or divergence of $\sum_{n=1}^{\infty} \frac{n \cdot 2^n}{4n^3 + 1}$.

Solution:

A reasonable comparison would be with the series $\sum_{n=1}^{\infty} \frac{n \cdot 2^n}{n^3}$, or $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$. Then let’s find out whether the comparison series $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ is convergent or divergent. It is neither a geometric series nor a p-series, but:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{2^n \cdot \ln^2 n}{n^2} \neq 0$$

so by the nth-Term Test for Divergence, the series $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ is divergent. Now:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left[\frac{n \cdot 2^n \cdot n^2}{4n^3 + 1} \right] = \lim_{n \to \infty} \left[\frac{n^3}{4n^3 + 1} \right] = \frac{1}{4} > 0$$

∴ By the Limit Comparison Test, the given series $\sum_{n=1}^{\infty} \frac{n \cdot 2^n}{4n^3 + 1}$ diverges.

Also read Examples 3 & 4 in textbook, pgs. 626-627.