§9.8 POWER SERIES

Objective: To learn that several important types of functions \(f \) can be represented exactly by an infinite series called a power series.

Definition of Power Series

If \(x \) is a variable, then an infinite series of the form

\[
\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots + a_n x^n + \cdots
\]

is called a power series. More generally, an infinite series of the form

\[
\sum_{n=0}^{\infty} a_n (x - c)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \cdots + a_n (x - c)^n + \cdots
\]

is called a power series centered at \(c \), where \(c \) is a constant.

Example 1:

Radius and Interval of Convergence

A power series in \(x \) can be viewed as a function of \(x \):

\[
f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n
\]

where the “domain” of \(f \) is the set of all \(x \) for which the power series converges.

The following important theorem states that the domain of a power series can take 3 basic forms: (1) a single point, (2) an interval centered at \(c \), or (3) the entire real line.
Example 2: Find the Radius of Convergence.

a) \[\sum_{n=1}^{\infty} \frac{(x-3)^n}{n} \]
b) \[\sum_{n=0}^{\infty} (n!)x^n \]

c) \[\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \]

INTERVAL OF CONVERGENCE

Note that for a power series whose radius of convergence is a finite number \(R \), the previous theorem says *nothing about the convergence at the endpoints* of the interval of convergence.

So, **each endpoint must be tested separately for convergence or divergence**.
Example 3: Find the Interval of Convergence.

a) \[\sum_{n=0}^{\infty} \frac{(-1)^n(x+1)^n}{2^n} \]

b) \[\sum_{n=1}^{\infty} \frac{x^n}{n^2} \]
Once a power series is defined as a function, it’s natural for us to wonder how we can determine the characteristics of the function. Is it still continuous? Differentiable? The next theorem answers these questions.

THEOREM 9.21 Properties of Functions Defined by Power Series

If the function given by

\[f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n \]

\[= a_0 + a_1(x - c) + a_2(x - c)^2 + a_3(x - c)^3 + \cdots \]

has a radius of convergence of \(R > 0 \), then, on the interval \((c - R, c + R)\), \(f \) is differentiable (and therefore continuous). Moreover, the derivative and antiderivative of \(f \) are as follows.

1. \(f'(x) = \sum_{n=1}^{\infty} n a_n (x - c)^{n-1} \)

\[= a_1 + 2a_2(x - c) + 3a_3(x - c)^2 + \cdots \]

2. \[\int f(x) \, dx = C + \sum_{n=0}^{\infty} a_n \frac{(x - c)^{n+1}}{n + 1} \]

\[= C + a_0(x - c) + a_1 \frac{(x - c)^2}{2} + a_2 \frac{(x - c)^3}{3} + \cdots \]

The radius of convergence of the series obtained by differentiating or integrating a power series is the same as that of the original power series. The interval of convergence, however, may differ as a result of the behavior at the endpoints.
Example 4: Consider the function \(f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots \)

Find the Interval of Convergence for each of the following:

a) \(\int f(x) \, dx \)
b) \(f(x) \)
c) \(f'(x) \)

Solution: [pg. 665 in text]