1. Plug in: $f(-6)-2 f(-3)=(-6)^{2}-2(-3)^{2}=36-2 \cdot 9=18$. (Answer: E)
2. Only the y values were made negative, so if the original points are on $y=-2 x+c$, the new points are on $-y=-2 x+c \Longleftrightarrow y=2 x-c$, so they are on a line of slope 2 . (Answer: D)
3. An $11^{\text {th }}$ degree polynomial has at most $11 x$-intercepts and, because 11 is odd, at least $1 x$-intercept, so $m=11$ and $n=1$ and $m+n=12$. (Answer: D)
4. In each minute that goes by, Jan cleans $1 / 20$ of the kitchen, Ken cleans $1 / 12$ of the kitchen, and Ben "cleans" $-1 / 10$ of the kitchen. Working together, they clean $\frac{1}{20}+\frac{1}{12}-\frac{1}{10}=\frac{1}{30}$ of the kitchen every minute, so it takes them 30 minutes to clean the entire kitchen. (Answer: D)
5. If you are not already familiar with these graphs, it is easiest to plot them on a graphing calculator. In the standard window, two intersections are easily seen, one at approximately $x=-0.86$ and another at approximately $x=1.24$. For $x>1.24$, the graph $y=x^{4}$ is above $y=2^{x}$, but we know that exponential functions grow faster than polynomials, so there must be a third intersection at some larger value of x; indeed the graphs cross again when $x=16$, so there are 3 points of intersection in all. (Answer: D)
6. The region is a square of side length 6 with a quarter circle of radius 6 removed, so $A=6^{2}-\frac{1}{4} \pi\left(6^{2}\right)=$ $36-9 \pi$. (Answer: B)
7. Let M, S, F be my age now, my son's age now, and my father's age now. We are given $F=$ $5 S, S+(F-M)=M+8$, and $M+F=100$. Substituting $F=5 S$ into the other equations and simplifying we obtain $3 S-M=4$ and $5 S+M=100$. Adding these equations we obtain $8 S=104$, so $S=13, M=3 S-4=35$, and I am $M-S=22$ years older than my son. (Answer: D)
8. The ratio of thefts per person is $\left(A e^{a t}\right) /\left(B e^{b t}\right)=(A / B) e^{(a-b) t}$, where A, B, a, b are constants. Depending on whether $a-b$ is positive, negative, or zero, this could be exponential growth, exponential decay, or constant, but it can not be non-constant linear. (Answer: B)
9. $a^{2}-b^{2}=(a-b)(a+b)$ and $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$, so $a-b$ is a factor of both $33=3 \cdot 11$ and $817=19 \cdot 43$. Since they have no common prime factors, the only possibility is $a-b=1$. [Alternative: The difference between consecutive squares is $(n+1)^{2}-n^{2}=2 n+1$, so make a list of the squares of numbers up to $n+1$, where $2 n+1=33 \Longrightarrow n=16$. In fact, $a=17$ and $b=16$ satisfy both equations, so $a-b=17-16=1$.] (Answer: A)
10. The law of cosines says $c^{2}=a^{2}+b^{2}-2 a b \cos (C) \Longrightarrow \cos (C)=\left(a^{2}+b^{2}-c^{2}\right) /(2 a b)$. Applying this to the given triangle for $C=S, M, L$ and adding the results, we have

$$
\cos S+\cos M+\cos L=\frac{7^{2}+8^{2}-6^{2}}{2 \cdot 7 \cdot 8}+\frac{8^{2}+6^{2}-7^{2}}{2 \cdot 8 \cdot 6}+\frac{7^{2}+6^{2}-8^{2}}{2 \cdot 7 \cdot 6}=\frac{47}{32}
$$

(Answer: B)
11. $\cos x=\cot x \cos x \Longleftrightarrow \cos x=0$ or $\cot x=1 \Longleftrightarrow \cos x=\sin x$. The solutions to these two equations with $0 \leq x \leq 2 \pi$ are $x=\frac{\pi}{2}, \frac{3 \pi}{2}$ and $x=\frac{\pi}{4}, \frac{5 \pi}{4}$. The sum of all these solutions is $7 \pi / 2=3.5 \pi$. (Answer: C)
12. List the possibilities (tree diagram) using the facts that only A or Y or C can follow A , only T or Y or C can follow M, etc. The possibilities are AYACMT, AYACTM, AYMTCA, ACAYMT, ACTMYA, AAYMTC, AAYMCT, AACTMY, so 8 in all. (Answer: D)
13. $\log _{a}\left(\log _{b}\left(\log _{c} x\right)\right)=0 \Longleftrightarrow \log _{b}\left(\log _{c} x\right)=1 \Longleftrightarrow \log _{c} x=b \Longleftrightarrow x=c^{b}$, so x_{1}, \ldots, x_{6} are all the possibilities for c^{b}, where c, b are any two of the values $2,4,8$, so $N=\log _{2}\left(2^{N}\right)=\log _{2}\left(x_{1} \cdots x_{6}\right)=\log _{2}\left(2^{4} 2^{8} 4^{2} 4^{8} 8^{2} 8^{4}\right)=4 \cdot 1+8 \cdot 1+2 \cdot 2+8 \cdot 2+2 \cdot 3+4 \cdot 3=50$. (Answer: E)
14. The intersection is a right triangle with base 3 and height $3 \tan \theta$, where θ is the angle of overlap: $\angle C A B+(\angle C A B-\theta)=\frac{\pi}{2} \quad \Longrightarrow \quad \theta=2 \angle C A B-\frac{\pi}{2}=2 \arctan (4 / 3)-\frac{\pi}{2}$. So the area of intersection is $\frac{1}{2} \cdot 3 \cdot 3 \tan \left[2 \arctan (4 / 3)-\frac{\pi}{2}\right]=1.3125=\frac{21}{16}$. (Answer: A)
15. In scientific notation, a number $N>1$ with D digits and leading digit L is equal to $(L+\varepsilon) \times 10^{D-1}$, where $0 \leq \varepsilon<1$ is the decimal part. Taking $\log _{10}$ we have $\log _{10} N=\log _{10}(L+\varepsilon)+D-1$. Since $N=2005^{2005}$, we have $\log _{10}(N)=2005 \log _{10}(2005) \approx 6620.7393$. From this we determine that $D-1=6620 \Longrightarrow D=6621$ and $\log _{10}(L+\varepsilon)=.7393 \Longrightarrow L+\varepsilon=5.4869$, so $L=5$. Therefore, $D+L=6626$. (Answer: D)
16. All four identities are true. (1) Solve for z in the given: $\cos t+z^{2} \cos t=1-z^{2} \Longrightarrow z^{2}=$ $(1-\cos t) /(1+\cos t)$, then take square roots. (2) $\sin ^{2} t=1-\cos ^{2} t=\left[\left(1+z^{2}\right)^{2}-\left(1-z^{2}\right)^{2}\right] /\left(1+z^{2}\right)^{2}=$ $\left[2 z /\left(1+z^{2}\right)\right]^{2}$, then take square roots. (3) Use $\tan t=\sin t / \cos t$, the previous identity, and the given. (4) $\tan (2 u)=\sin (2 u) / \cos (2 u)=2 \sin u \cos u /\left(\cos ^{2} u-\sin ^{2} u\right)=2 \tan u /\left(1-\tan ^{2} u\right)$, so set $u=t / 2$ to obtain $\tan t=2 \tan (t / 2) /\left(1-\tan ^{2}(t / 2)\right)$ and compare with the previous identity. (Alternatively, choose a random value for z between 0 and 1 , use the given to find t, and check all four identities with a calculator.) (Answer: E)
17. If you are using a TI calculator, type 2 , ENTER, $12 /\left(2^{*}\right.$ Ans +5$)$, and then ENTER a whole bunch of times. You will quickly see the numbers converge to 1.5 . Alternatively, assume N is large enough that $a_{N} \approx a_{N+1} \approx L$, where L is the limit these numbers converge to. Then $L \approx a_{N+1}=$ $12 /\left(2 a_{N}+5\right) \approx 12 /(2 L+5)$, so we should have $L \approx 12 /(2 L+5)$. In fact, this equation is exactly true, and you can solve it to find $2 L^{2}+5 L-12=0 \Longrightarrow(2 L-3)(L+4)=0 \Longrightarrow L=3 / 2$ or $L=-4$. $L=-4$ doesn't make sense in this problem, so the answer is $3 / 2$. (Answer: A)
18. 25 is odd, so no two points are on a diameter, so no three points form a right triangle, since the right angle would subtend a diameter. So $R=0$ and we must find $|R-I|=|0-I|=I .3$ is not a factor of 25 , so no triangle is equilateral, so there are $25 \cdot 12$ isoceles triangles (25 choices for vertex, then $12=(25-1) / 2$ choices for base pairs). The total number of triangles is $C_{25,3}=25 \cdot 24 \cdot 23 / 6=25 \cdot 23 \cdot 4$, so $I=(25 \cdot 12) /(25 \cdot 23 \cdot 4)=3 / 23$. (Answer: D)
19. Add the equations to obtain $x^{2}+2 x y+y^{2}+15(x+y)=54 \Longrightarrow(x+y)^{2}+15(x+y)-54=0$, which factors as $[(x+y)+18][(x+y)-3]=0$, so $x+y=-18$ or 3 . (Answer: A)
20. The angles at A and B are both acute, and the angle at P is right iff it lies on a circle with diameter $A B$, so P must lie outside this circle to have an acute angle. The probability of this is the area of the square outside the circle, divided by the area of the square $=\left(1-\frac{1}{2} \pi(1 / 2)^{2}\right) / 1^{2}=1-\frac{\pi}{8}$. (Answer: D)

