1.	The numerical values of the x- and y-intercepts of a straight line are the same nonzero number What is the slope of the line?													
	A.	-2	B.	-1	C.	0	D.	1	E.	2				
2.	A fraction is chosen at random from all positive unreduced proper fractions with denominators less than 6. Find the probability that the fraction's decimal representation terminates.													
	A.	3/5	B.	2/3	C.	7/10	D.	7/9	E.	4/5	5			
3.	Two adjacent faces of a rectangular box have areas 36 and 63. If all three dimensions are positive integers, find the ratio of the largest possible volume of the box to the smallest possible volume.													
	A.	1	B.	2	C.	3	D.	9	E.	12				
4.	Five students enroll in a statistics class. The first test is scored on a percent basis (0% to 100%) rounding each score to the nearest whole number. Four of their scores are 93, 96, 99, and 100. How many possible whole number scores on the fifth student's test will make the median of the five scores equal to the mean of the five scores?													
	A. 0		B. 1		C. 2		D. 3		E. m	ore tl	han 3			
5.	In the expression (AM)(AT)(YC), each different letter is replaced by a different digit 0 to 9 to form three two-digit numbers. If the product is to be as large as possible, what are the last two digits of the product?													
	A.	20	B.	40	C.	50	D.	60	E.	90				
6.	A basketball player has a constant probability of 80% of making a free throw. Find the probability that her next successful free throw is the third or fourth one she attempts.													
	A.	0.032		B.	0.0384	4	C.	0.048	}	D.	0.096	E.	0.192	
7.	If $\begin{bmatrix} a \\ c \end{bmatrix}$ all po	$\begin{bmatrix} b \\ d \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix}$ esitive i	-10 6 6] ntegers	$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find	the sm	allest p	ossible	e value	of a -	+ <i>b</i> + <i>c</i> +	d, if a, l	o, c, and d	are
	A.	4	B.	8	C.	12	D.	16	E.	24				
8.	If she	worke	d 180 ł		ist mor	nth and	l earne						or \$20 an l y hours th	
	A.	75	B.	77	C.	80	D. 8	32	E.	85				
9.	Let $s(x) = \sin(\pi x)$ and $S(x) = [s(x)]^2$. Find $s(s(1/6)) + S(S(1/3))$.													
	A. 3	/4	B.	1	C.	4/3		D. 3	3/2		E. 2	2		
10.											and r . If $+ q + r$?	How ma	any other	years

E.

6

5

D.

C.

4

3

B.

2

A.

11.	How many positive integers less than 1000 are relatively prime to 105? Two integers are relatively prime if their greatest common divisor is 1.													
	A.	325	B.	457	C.	466	D.	533	E.	674				
12.	In isosceles \triangle ABE with base AB, AB = 10 and BE = 13. Square ABCD intersects \triangle ABE at points F and G. Find the area common to the interiors of the square and the triangle.													
	A.	125/3	3	B.	35	C.	40		D.	175/3	3	E.	65	
13.	The equation $x^{\log_{25} 9} + 9^{\log_{25} x} = 54$ has a solution in common with which of the following?													
	A. $x^3 - 125x^2 - x + 125x^2 - x + 125x^2 - 25x + 125x^3 - 5x^2 - 125x + 125x^3 - 5x^2 - 125x + 125x^3 - 125x^2 - 125x^2 + 125x^3 - 125x^2 - 125x$				=0					x - 125 = 25x - 12				
14.	If you have eight pairs of socks, each pair a different color, find the probability that if you randomly lose five socks, the remaining socks form exactly four matching pairs (and three unmatched socks).													
	A.	20/39	9	B.	7/13		C.	22/3	9	D.	23/39	9	E.	8/13
15.	If $h(x) = 2x + 2$ and $k(x) = 2x^3 - 7x^2 - 11x + 6$, find the sum of all of the irrational zeros of $h(k(x))$ and $k(h(x))$.													
	A.	1/2	B.	3/2	C.	7/2	D.	9/2	E.	11/2				
16.	If $h(x) = 2x + 2$ and $k(x) = 2x^3 - 7x^2 - 11x + 6$, find the sum of all of the rational zeros of $h(k(x))$ and $k(h(x))$.													
	A.	-5/4	B.	-3/4	C.	-1/4	D.	1/4		E. 3/4	4			
17.	In pentagon AMTYC, $AC = MT = 10$, $YT = CY = 20$, $\angle A = \angle M = 135^{\circ}$, and $\angle Y = 150^{\circ}$. Find the area of the pentagon to the nearest square unit.													
	A. 315		B. 318		C. 320		D. 323		E. 325					
18.	How many 4-digit numbers whose digits are all odd are multiples of 11?													
	A.	80	B.	85	C.	90	D.	95	E.	100				
19.	Find the tens digit of 3 ²⁰⁰⁷ .													
	A.	0	B.	2	C.	4	D.	6	E.	8				
20.	In the sequence a_1 , a_2 , a_3 ,, $a_1 = 1$, $a_2 = 2$, $a_3 = 5$, and for all $n \ge 3$, $a_{n-1}a_{n-2} = 2a_na_{n-2} - 2a_{n-1}a_{n-1}$. Find a_{2006}/a_{2005} .													
	A. 1	.002	B. 1	002.5	C. 1	003	D. 1	003.5	E.	1004				

- 1. B
- 2. E
- 3. D
- 4. C
- 5. B
- 6. B
- 7. D
- 8. B
- 9. D
- 10. C
- 11. B
- 12. D
- 13. A
- 14. A
- 15. C
- 16. A
- 17. D
- 18. B
- 19. E
- 20. E