1. One can of frozen juice concentrate, when mixed with $4 \frac{1}{3}$ cans of water, makes 2 quarts (64 oz .) of juice. Assuming no volume is gained or lost by mixing, how many oz. does a can hold?
A. 8
B. 10
C. 12
D. 15
E. 18
2. Define the operation Δ by $a \Delta b=a b+b$. Find $(3 \Delta 2) \Delta(2 \Delta 3)$.
A. 72
B. 73
C. 80
D. 81
E. 90
3. A square is covered by a design made up of four identical rectangles surrounding a central square, as shown at the right. If the area of the central square is $4 / 9$ of the area of the entire design, find the ratio of the length of a rectangle to the side of the central square.
A. $\frac{5}{4}$
B. $\frac{4}{3}$
C. $\frac{7}{5}$
D. $\frac{3}{2}$
E. $\frac{8}{5}$

4. A radio station advertises, "Traffic every 10 minutes, 24 hours a day; 1000 reports each week." What is the difference between the advertised number of reports and the exact number?
A. 8
B. 12
C. 16
D. 20
E. 24
5. Trina has two dozen coins, all dimes and nickels, worth between $\$ 1.72$ and $\$ 2.11$. What is the least number of dimes she could have?
A. 10
B. 11
C. 15
D. 18
E. 19
6. Square $P Q R S$ has sides of length 10 . Points T, U, V, and W are chosen on sides $P Q, Q R, R S$, and $S P$ respectively so that $P T=Q U=R V=S W=2$. Find the area of quadrilateral $T U V W$.
A. 48
B. 52
C. 56
D. 64
E. 68
7. A bicycle travels at s feet/minute. When its speed is expressed in inches/second, the numerical value decreases by 16 . Find s. (1 foot $=12$ inches)
A. 12
B. 16
C. 18
D. 20
E. 24
8. The average of A and $2 B$ is 7 , and the average of A and $2 C$ is 8 . What is the average of A, B, and C ?
A. 3
B. 4
C. 5
D. 6
E. 9
9. Replace each letter of AMATYC with a digit 0 through 9 to form a six-digit number (identical letters are replaced by identical digits, different letters are replaced by different digits). If the resulting number is the largest such number which is a perfect square, find the sum of its digits (that is, $\mathrm{A}+\mathrm{M}+\mathrm{A}+\mathrm{T}+\mathrm{Y}+\mathrm{C}$).
A. 32
B. 33
C. 34
D. 35
E. 36
10. A door is 4 feet wide and 7 feet high. If the door is standing open at a 90° angle with the door frame, what is the greatest distance in feet from the outer top corner of the door to a point on the door frame?
A. 8
B. 9
C. 9.5
D. 10
E. 11
11. A class is exactly 40% female. When 3 male students are replaced by female students, the class becomes exactly 44% female. How many more males than females are in the original class?
A. 10
B. 12
C. 15
D. 18
E. 20
12. A piece has 2 saxophone parts, 3 trumpet parts, and 3 trombone parts. If a band has 2 saxophonists, 3 trumpeters, and 3 trombonists, in how many ways can different parts be assigned to each player?
A. 18
B. 72
C. 324
D. 512
E. 2916
13. Add any integer N to the square of $2 N$ to produce an integer M. For how many values of N is M prime?
A. 0
B. 1
C. 2
D. A finite number >2
E. An infinite number
14. Sixteen students in a dance contest have numbers 1 to 16 . When they are paired up, they discover that each couple's numbers add to a perfect square. What is the largest difference between the two numbers for any couple?
A. 5
B. 7
C. 10
D. 12
E. 14
15. In how many distinct ways can a 4 x 4 square be covered exactly by four \square tiles? Assume that rotations and reflections are different coverings.
A. 5
B. 6
C. 8
D. 9
E. 10
16. What is the smallest positive integer that cannot be the degree measure of an exterior angle of a regular polygon?
A. 1
B. 2
C. 3
D. 5
E. 7
17. When certain proper fractions in simplest terms are added, the result is in simplest terms: $\frac{2}{15}+\frac{1}{21}=\frac{19}{105}$; in other cases, the result is not in simplest terms: $\frac{2}{15}+\frac{5}{21}=\frac{39}{105}=\frac{13}{35}$. Assume that $\frac{m}{15}$ and $\frac{n}{21}$ are positive proper fractions in simplest terms. For how many such fractions is $\frac{m}{15}+\frac{n}{21}$ not in simplest terms?
A. 35
B. 48
C. 70
D. 72
E. 140
18. Let r, s, and t be nonnegative integers. How many such triples (r, s, t) satisfy the system $\left\{\begin{array}{l}r s+t=14 \\ r+s t=13\end{array} ?\right.$
A. 2
B. 3
C. 4
D. 5
E. 6
19. The average of any 17 consecutive perfect square integers is always k greater than a perfect square. If $k=2^{r} m$, where m is odd, find r.
A. 0
B. 1
C. 2
D. 3
E. 4
20. In $\triangle \mathrm{SML}, \mathrm{SM}=7$ and $\mathrm{ML}=9$. If $\mathrm{m} \angle M$ is exactly twice as large as $\mathrm{m} \angle S$, find $S L$.
A. 10
B. 11
C. 12
D. 13
E. 14
21. C
22. D
23. A
24. A
25. B
26. E
27. D
28. C
29. E
30. B
31. C
32. B
33. C
34. B
35. E
36. E
37. B
38. A
39. D
40. C
