Test #1 AMATYC Student Mathematics League

1.	One can of frozen of juice. Assumin	n juice concentrate, ng no volume is gain	when mixed with 4 ned or lost by mixing	$\frac{1}{3}$ cans of water, mag, how many oz. doe	kes 2 quarts (64 oz.) s a can hold?
	A. 8	B. 10	C. 12	D. 15	E. 18
2.	Define the operat	tion Δ by $a \Delta b = a$	$b + b$. Find $(3 \Delta 2)$	$\Delta (2 \Delta 3).$	
	A. 72	B. 73	C. 80	D. 81	E. 90
3.	A square is cover rounding a centra square is $4/9$ of t a rectangle to the A. $\frac{5}{4}$ B.	red by a design mag al square, as shown he area of the entire e side of the central $\frac{4}{2}$ C. $\frac{7}{5}$	the up of four identic at the right. If the at e design, find the rat square. D. $\frac{3}{2}$	cal rectangles sur- area of the central io of the length of E. $\frac{8}{5}$	
4.	A radio station what is the diffe	advertises, "Traffic e rence between the a	very 10 minutes, 24 advertised number of	4 hours a day; 1000 f reports and the exa	reports each week." act number?
	A. 8	B. 12	C. 16	D. 20	E. 24
5.	Trina has two do number of dimes	zen coins, all dimes s she could have?	and nickels, worth b	etween \$1.72 and \$2.	11. What is the least
	A. 10	B. 11	C. 15	D. 18	E. 19
6.	Square $PQRS$ has and SP respectively.	as sides of length 10 vely so that $PT = Q$). Points T, U, V, a QU = RV = SW = 2	and W are chosen or 2. Find the area of q	a sides PQ , QR , RS , uadrilateral $TUVW$.
	A. 48	B. 52	C. 56	D. 64	E. 68
7.	A bicycle travels value decreases b	at s feet/minute. by 16. Find s . (1 for	When its speed is expected to $t = 12$ inches)	xpressed in inches/s	econd, the numerical
	A. 12	B. 16	C. 18	D. 20	E. 24
8.	The average of A and C ?	1 and $2B$ is 7, and	the average of A an	d 2 C is 8. What is	the average of $A, B,$
	A. 3	B. 4	C. 5	D. 6	E. 9
9.	Replace each lett letters are replace resulting number (that is, A + M	ter of AMATYC wi ced by identical dig \dot{T} is the largest such $\dot{T} + A + T + Y + C$	th a digit 0 through its, different letters number which is a	n 9 to form a six-dig are replaced by dif perfect square, find	git number (identical ferent digits). If the the sum of its digits
	A. 32	B. 33	C. 34	D. 35	E. 36
10.	A door is 4 feet frame, what is th door frame?	wide and 7 feet hig e greatest distance i	h. If the door is sta in feet from the oute	nding open at a 90° or top corner of the d	angle with the door loor to a point on the
	A. 8	B. 9	C. 9.5	D. 10	E. 11

October/November 2007

11.	A class is exactly 40% female. When 3 male students are replaced by female students, the class becomes exactly 44% female. How many more males than females are in the original class?						
	A. 10	B. 12	C. 15	D. 18	E. 20		
12.	A piece has 2 saxophone parts, 3 trumpet parts, and 3 trombone parts. If a band has 2 saxophonists, 3 trumpeters, and 3 trombonists, in how many ways can different parts be assigned to each player?						
	A. 18	B. 72	C. 324	D. 512	E. 2916		
13.	Add any integ prime?	any integer N to the square of $2N$ to produce an integer M. For how many values of N is M ne?					
	A. 0 B	. 1 C. 2	D. A finite nu	$mber > 2 \qquad E.$	An infinite number		
14.	Sixteen students in a dance contest have numbers 1 to 16. When they are paired up, they discover that each couple's numbers add to a perfect square. What is the largest difference between the two numbers for any couple?						
	A. 5	B. 7	C. 10	D. 12	E. 14		
15.	In how many distinct ways can a $4x4$ square be covered exactly by four \Box tiles? Assume that rotations and reflections are different coverings.						
	A. 5	B. 6	C. 8	D. 9	E. 10		
16.	What is the s regular polyge	What is the smallest positive integer that cannot be the degree measure of an exterior angle of a regular polygon?					
	A. 1	B. 2	C. 3	D. 5	E. 7		
17.	When certain proper fractions in simplest terms are added, the result is in simplest terms: $\frac{2}{15} + \frac{1}{21} = \frac{19}{105}$ in other cases, the result is not in simplest terms: $\frac{2}{15} + \frac{5}{21} = \frac{39}{105} = \frac{13}{35}$. Assume that $\frac{m}{15}$ and $\frac{n}{21}$ are positive proper fractions in simplest terms. For how many such fractions is $\frac{m}{15} + \frac{n}{21}$ not in simplest terms?						
	A. 35	B. 48	C. 70	D. 72	E. 140		
18.	Let r, s, and t be nonnegative integers. How many such triples (r, s, t) satisfy the system $\begin{cases} rs + t = 14 \\ r + st = 13 \end{cases}$?						
	A. 2	B. 3	C. 4	D. 5	E. 6		
19.	The average of any 17 consecutive perfect square integers is always k greater than a perfect square. If $k = 2^r m$, where m is odd, find r.						
	A. 0	B. 1	C. 2	D. 3	E. 4		
20.	. In \triangle SML, SM = 7 and ML = 9. If m $\angle M$ is exactly twice as large as m $\angle S$, find SL.						
	A. 10	B. 11	C. 12	D. 13	E. 14		

Test $\#1$	AMATYC Student Mathematics League Answers	October/November 2007
1 C		
2. D		
3. A		
4. A		
5. B		
6. E		
7. D		
8. C		
9. E		
10. B		
11. C		
12. B		
13. C		
14. B		
15. E		
16. E		
17. B		
18. A		

19. D 20. C