1. $a+\left(4 \frac{1}{3}\right) a=64 \Rightarrow a=12$ (Answer: C)
2. $(3(2)+2) \Delta(2(3)+3)=8 \Delta 9=8(9)+9=81$ (Answer: D)
3. Let a be the length of the rectangle, let b be the side of the square - the side of the entire design is then $a+a-b \Rightarrow b^{2}=\frac{4}{9}(2 a-b)^{2} \Rightarrow b=\frac{2}{3}(2 a-b) \Rightarrow \frac{a}{b}=\frac{5}{4}$ (Answer: A)
4. Six reports per hour $\Rightarrow 6 \times 24 \times 7=1008$ (Answer: A)
5. Let d be the number of dimes, so she has $24-d$ nickels. $1.72<0.10 d+0.05(24-d)<2.11 \Rightarrow 10.4<$ $d<18.2 \Rightarrow 11$ dimes (Answer: B)
6. $A_{T U V W}=A_{P Q R S}-4 \cdot A_{\triangle \mathrm{PTW}}=100-4\left(\frac{1}{2}(8)(2)\right)=68$ (Answer: E)
7. $s-16=\frac{s(12)}{60} \Rightarrow s=20$ (Answer: D)
8. $\frac{A+2 B}{2}=7, \frac{A+2 C}{2}=8 \Rightarrow \frac{2 A+2 B+2 C}{2}=15 \Rightarrow A+B+C=15 \Rightarrow \frac{A+B+C}{3}=5$ (Answer: C)
9. Trial and error. Looking at a list of perfect squares reveals: AMATYC $=898,704=948^{2}$ (Answer: E)
10. From the figure shown, $b=\sqrt{4^{2}+4^{2}}=\sqrt{32}$ then $a=\sqrt{7^{2}+b^{2}}=9$ (Answer: B)
11. $M=\frac{3}{2} F, \frac{F+3}{M+F}=0.44 \Rightarrow \frac{F+3}{\frac{3}{2} F+F}=0.44 \Rightarrow F=30, M=45$ (Answer: C)
12. 2 ! $\cdot 3$! $\cdot 3$! $=72$ (Answer: B)
13. $N+4 n^{2}=M \Rightarrow N(1+4 N)=M, M$ is prime iff $N= \pm 1$ (Answer: C)

Problem 10
14. $(16,9),(15,10),(14,11),(13,12),(8,1),(7,2),(6,3),(5,4)$; largest diff. is $16-9=8-1=7$ (Answer: B)
15.

(Answer: E)
16. 7 is the smallest integer that is not a factor of 360° (Answer: E)
17. (Answer: B)
18. Add to get $r s+r+t+s t=27 \Rightarrow(s+1)(r+t)=27, s+1$ must be a factor of 27 which gives possible answers for $s: 0,2,8,26$. This leads to the only possible ordered triples: $(13,0,14)$ and $(5,2,4)$. (Answer: A)
19. $\frac{n^{2}+(n+1)^{2}+(n+2)^{2}+\ldots+(n+16)^{2}}{17}=n^{2}+16 n+88=\left(n^{2}+16 n+64\right)+24 \Rightarrow k=24$ (Answer: D)
20. Law of sines gives: $\frac{9}{\sin \theta}=\frac{S L}{\sin 2 \theta} \Rightarrow S L=\frac{9 \sin 2 \theta}{\sin \theta}=18 \cos \theta$, law of cosines gives: $81=S L^{2}+49-$ $14(S L) \cos \theta$, substitute $\cos \theta=\frac{S L}{18}$ into this equations and solve for $S L$. (Answer: C)

