1. $L: y=3 x+3, M: y=-\frac{1}{2} x+3$ (Answer: A)
2. Solve the system: $\left\{\begin{array}{l}1.05 S=L+1200 \\ 1.01 S=L\end{array}\right.$ (Answer: D)
3. $\left(a x^{2}+b x+c\right) \div(x+1)=a x+b-a$ with remainder $c+a-b$. Since the remainder equals zero, use $b=a+c$ and solve for x in $a x+b-a=0$. (Answer: D)
4. 5 pennies has more than one solution, 10 pennies is too many. Therefore 0 pennies, 9 nickels. (Answer: E)
5. x and y represent the slope of the line. Find the only pair that can't reduce. (Answer: B)
6. Every 4 jumps $=8$ numbers. The flea advances 502 numbers in 2008 jumps. $(502 \bmod 12)=8$. (Answer: E)
7. EFGH is a parallelogram. (Answer: D)
8. 15 subsets, 3 give duplicate sums. (Answer: C)
9. $\left\{\begin{array}{l}a x-b=c \\ b x-c=a\end{array} \Rightarrow\left\{\begin{array}{l}-a b x+b^{2}=-b c \\ a b x-a c=a^{2}\end{array} \quad \Rightarrow b^{2}-a c=a^{2}-b c \Rightarrow a^{2}-b^{2}+a c-b c=0\right.\right.$
$\Rightarrow(a+b)(a-b)+c(a-b)=0 \Rightarrow a+b+c=0$ (Answer: A)
10. Vertical asymptote at $\mathrm{x}=15$, horizontal asymptote at $\mathrm{y}=1$ (Answer: C)
11. The largest number that would fit the pattern is 989,765 . Find the largest multiple of 55 that is less than this number, which is 989,725 and it happens to also fit the pattern. (Answer: C)
12. The power of 6 is suspiciously large - if a is not a power of 2 , then it must be 3 , since $3^{6}=729<2009$, but $5^{6}>2009$. If $a=3$, that means we must write $2009-729=1280$ as a sum of powers of 2 . The highest power of 2 less than 1280 is 1024 , and sure enough, $1280=1024+256=2^{10}+2^{8}=\left(2^{5}\right)^{2}+\left(2^{4}\right)^{2}$. Altogether, $2009=3^{6}+32^{2}+16^{2}$, so $a+b+c=3+32+16=51$. (Answer: E)
13. It will happen when Feb. 1 lands on a Friday in a leap year and that day is an even number of weeks away from $2 / 1 / 2008$. 7 leap years later will be 1461 weeks, so we need to go another 7 leap years or 56 years. The year will be 2064. (Answer: C)
14. A and D have opposite stories so one must be true and the other false. B and E have the same story, and since only two suspects are lying, they must be telling the truth. Therefore C is lying. (Answer: E)
15. Too little information is given, in the sense that not enough answer choices are given - the correct one is missing! Write the first sequence as $a, a+r, a+2 r, a+3 r, \ldots$ and the second as $b, b+s, b+2 s, b+3 s, \ldots$ The information about the product sequence amounts to the three equations (A) $a b=468$, (B) $a b+a s+b r+r s=462$, and (C) $a b+2 a s+2 b r+4 r s=384$. We are asked for the next term in the product sequence, which is $(a+3 r)(b+3 s)=a b+3 a s+3 b r+9 r s$. Subtracting (B) from (C), we have $a s+b r+3 r s=-78$. Multiplying this by 3 and adding $a b=468$, we find the next term in the sequence is $a b+3 a s+3 b r+9 r s=468+3(-78)=234$.
16. $\frac{\tan \frac{A-B}{2}}{\tan \frac{A+B}{2}}=\frac{\sin \frac{A-B}{2} \cos \frac{A+B}{2}}{\cos \frac{A-B}{2} \sin \frac{A+B}{2}}=\frac{\frac{1}{2}(\sin A-\sin B)}{\frac{1}{2}(\sin A+\sin B)}=\frac{\frac{9}{7} \sin B-\sin B}{\frac{9}{7} \sin B+\sin B}=\frac{1}{8}$ (Answer: A)
17. The plane separates the original pyramid into the desired solid and a smaller pyramid with height 6 m , similar to the original pyramid. The base of this small pyramid is determined by $\frac{6}{9}=\frac{b_{S}}{6} \Rightarrow b_{S}=4$ m . Therefore $V=V_{L}-V_{S}=\frac{1}{3}(6)^{2}(9)-\frac{1}{3}(4)^{2}(6)=76$ (Answer: E)
18. Area of $\triangle \mathrm{ABC}=(A B)^{2} \sin (A)$. Area of $\triangle \mathrm{DEF}=(D E)^{2} \sin (D)=\left(\frac{A B}{2}\right)^{2} \sin (2 A)=\frac{(A B)^{2}}{2} \cos (A) \sin (A)$ (Answer: B)
19. The resulting triangle is equilateral with sides of length 50. $A=\frac{1}{2}(50)(25 \sqrt{3})=625 \sqrt{3}$ (Answer: A)
20. The key here is to wonder why they wrote the first term the way they did. If you multiply out the the first two terms, leaving the powers of 2 as powers of 2 , you get $\left(2^{2}+2^{1}+1\right)\left(2^{2}-2^{1}+1\right)=\left(2^{4}+2^{2}+1\right)$, which is similar to the next term except for the sign. Suspecting a pattern, go ahead and multiply $\left(2^{4}+2^{2}+1\right)\left(2^{4}-2^{2}+1\right)$ and see that you get $\left(2^{8}+2^{4}+1\right)$. So what we have is a telescoping product (prove it if you like) and the whole thing simplifies to

$$
P(k)=\left(2^{2^{k+2}}+2^{2^{k+1}}+1\right)-1=2^{2^{k+2}}+2^{2^{k+1}}=2^{2^{k+1}}\left(2^{2^{k+1}}+1\right)=n(n+1)
$$

So we need to find the lowest k for which

$$
n+n+1=2 n+1=2^{2^{k+1}+1}+1 \geq 10^{1000}
$$

The left side is odd and the right is even, so this is the same as $2^{2^{k+1}+1} \geq 10^{1000}$. Take $\log =\log _{10}$ of both sides to get $2^{k+1}+1 \geq 1000 / \log 2=3321.9$, so we need to have $2^{k+1} \geq 3322$. Take log again to find $k+1 \geq \log 3322 / \log 2=11.7$, so $k \geq 10.7$, so k is at least 11 . (Answer: C)

