1. Let $x$ be the length of the side of the square. The perimeter of each of the two rectangles would be $2 x+2(x / 2)=3 x=36 \Longrightarrow x=12$. The area of the square is $12^{2}=144$. (Answer: D )
2. Let $m_{1}$ and $b_{1}$ be last year's prices of milk and bread respectively and $m_{2}$ and $b_{2}$ be this year's. $m_{1}=1.5 b_{1}, m_{2}=1.2 m_{1}, b_{2}=1.25 b_{1}$. Now substitute to get an equation of $m_{2}$ as it relates to $b_{2}$ : $m_{2}=1.2 m_{1} \Longrightarrow m_{2}=1.2\left(1.5 b_{1}\right) \Longrightarrow m_{2}=1.2\left(1.5\left(b_{2} / 1.25\right)\right) \Longrightarrow m_{2}=1.44 b_{2}$. (Answer: C) (Now by induction, all answers to this exam will be 144)
3. Let $a=\angle A$ and $b=\angle B$. Solve the system: $\left\{\begin{array}{l}a=9 b \\ 90-b=9(90-a)\end{array}=\left\{\begin{array}{l}a=9 b \\ b=9 a-720\end{array}\right.\right.$ (Answer: C)
4. When $x^{2}-10 x-24=0 \Longrightarrow(x-12)(x+2)=0 \Longrightarrow x=12$ or -2 . (Answer: B)
5. This is the complement of the probability that all three dice show an odd number. The probability that the first die is odd is $\frac{3}{6}=\frac{1}{2}$, the second die is odd is also $\frac{1}{2}$ and the third die as well. So the probability that all three dice show an odd number is $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}$. Therefore the compliment of this is $1-\frac{1}{8}=\frac{7}{8}$. (Answer: E )
6. $f(0)=5 \Longrightarrow c=5$, with the other two conditions we get the system: $\left\{\begin{array}{l}a-b+5=10 \\ a+b+5=4\end{array}\right.$. Solve to get $a=2, b=-3$, so $f(x)=2 x^{2}-3 x+5 \Longrightarrow f(2)=7$. (Answer: A)
7. Consider the rectangle determined by these three points and the vertex $(10,8)$. The interior of this rectangle contains $(10-1)(8-1)=63$ lattice points. One lattice point will lie on the diagonal at the point $(5,4)$ because 5 and 4 are the only two integers that have the same 10:8 ratio. So the interior of the triangle will contain half of the 62 remaining points, which is 31 . Along the $y$ axis there are 9 more points ( 8 plus the point at the origin) and 10 additional points on the $x$-axis. $1+31+9+10=51$. (Answer: A)
8. Let $x$ and $y$ be the sides of the rectangle. $x+y=26$ and $x^{2}+y 2=400$. Square the first equation to get $x^{2}+2 x y+y^{2}=676$ then substitute for $x^{2}+y^{2}$ from the second equation to get $2 x y+400=$ $676 \Longrightarrow x y=138$. (Answer: B)
9. Observe the number of single-digit, 2-digit, 3-digit and 4-digit numbers. The first four digits are 2468 , then from $10 \ldots 98$ we have 452 -digit even numbers which represent the next 90 places. Then from 100 to 998 we have 4503 -digit numbers which represent the next 1350 places. So we accounted for $4+90+1350=1444$ places, which leaves $2010-1444=566$ remaining comprised of 4 -digit even numbers starting with 1000 . That's 144.5 even numbers which puts us past 1288 by two places, or two places into 1290 , or ' 2 '. (Answer: A)
10. The smallest such number will have $\mathrm{A}=1$ and $\mathrm{M}=0$. The number must be divisible by 5 , so C would be 0 or 5 and since 0 is already taken, $\mathrm{C}=5$ (not to mention, each choice has 5 as a last digit). Divide 101,235 (the smallest possible number under these constraints) by 35 to get approximately 2892.4. So start with $35 \times 2893=101,255$ and add 35 repeatedly until you get a number with unique digits (actually we could save time by adding 70 repeatedly because every other number will have a last digit of 0 , which is ruled out). We will quickly come up with 101,325 . (Answer: A)
11. If the point $(a, \ln (7))$ lies on $f$ then the point $(\ln (7), a)$ lies on $f^{-1}$. So $\ln \left(a+\sqrt{1+a^{2}}\right)=\ln (7) \Longrightarrow$ $a+\sqrt{1+a^{2}}=7 \Longrightarrow a=\frac{24}{7}$. (Answer: B)
12. $x=\tan \left[\arcsin \left(\frac{13}{14}\right)-30^{\circ}\right]=\frac{\tan \left(\arcsin \left(\frac{13}{14}\right)\right)-\tan 30^{\circ}}{1+\tan \left(\arcsin \left(\frac{13}{14}\right)\right) \tan 30^{\circ}}=\frac{\frac{13 \sqrt{3}}{9}-\frac{\sqrt{3}}{3}}{1+\frac{13 \sqrt{3}}{9} \cdot \frac{\sqrt{3}}{3}}=\frac{5 \sqrt{3}}{11}$. (Answer: A) 1
13. $a$ can be either $1,2,3$, or 4 because $5^{5}$ is too big. Try $a=1$. Then we have $b^{2}+c^{2}=2009$. If $b$ and $c$ have $d$ as a common factor, we can write them as $b=d x$ and $c=d y$ where $x$ and $y$ are integers. Then $d^{2} x^{2}+d^{2} y^{2}=2009 \Longrightarrow x^{2}+y^{2}=\frac{2009}{d^{2}}$. For this scenario to work, 2009 must have a perfect square as a factor and when we factor it out the result must be the sum of squares. Indeed, this is the case. That factor is $2009=49 \cdot 41$ (so $d=7$ ) and $5^{2}+4^{2}=41.1^{5}+35^{2}+28^{2}=2010$. (Answer: D)
14. Consider the numbers as ordered pairs on the coordinate axes. All pairs of numbers in $[0,1]$ would represent the square shown in the figure. All pairs of numbers whose sum is less than 1 can can be expressed as $x+y<1$. Finally all pairs of numbers with one number being at least twice the other would be represented as $y>2 x$ and $x>2 y$. The area shaded in blue in the figure represents the numbers that satisfy these conditions. Calculate the area of these triangles and divide by the area of the square. (Answer: C)

15. The resulting curve $C$ is a 6 by 8 rectangle with rounded corners of radius 1 (shown in green in the figure). The curve D is an 8 by 10 rectangle with rounded corners of radius 2 (shown in yellow). The area is made up of four quarter-circles of radius $2,\left(2^{2} \cdot \pi=4 \pi\right)$, the original 4 by 6 rectangle $(4 \times 6=24), 2$ rectangles that are 2 by 6 $(2 \times 2 \times 6=24)$ and 2 rectangles that are 2 by $4(2 \times 2 \times 4=16)$ for a total area of $64+4 \pi \approx 76.566$. (Answer: D)

16. The domain of $f$ is $-1 \leq x \leq 1$ but the range is $y<-1$ or $y>1$. Therefore numbers that come out of $f$ cannot go back into $f . f(f(x))$ does not exist for any values of $x$. (Answer: E)
17. $a_{n}=p+n r+q r^{n}$, assume the sequence starts at $n=0 . a_{1}-a_{0}=r+q r=19$ and $a_{2}-a_{1}=$ $r+q r^{2}-q r=64$. From the second expression you can quickly rule out 12 and 16. A little trial and error will show $r=4$. The sequence is $a_{n}=2+4 n+5 \cdot 4^{n}$. (Answer: B)
18. The first 7 terms are $p, q, p q, p q^{2}, p^{2} q^{3}, p^{3} q^{5}, p^{5} q^{8}$. So $p^{5} q^{8}=12,500,000$. Take the 8 th root of $12,500,000$ to see that $q$ can be at most 7 . Working backwards from 7 , you'll find $q=5$ and therefore $p=2$. The eighth term divided by the seventh term is the sixth term. $2^{3} \cdot 5^{5}=25000$. (Answer: E)
19. (Answer: E)
20. (Answer: B)
