Test #1	AMATYC SI	udent Mathematic	s League	Fall 2017		
1. For real numbe A104	ers <i>a</i> and <i>b</i> , define B96	an operation ∆ as C53	$a\Delta b = ab^2 - a $. D. 0	Find [(-2)∆5]∆(-1). E. 96		
largest possible v	alue of n that is less	ss than 1?	ll positive integers.			
A. 9/10	B. 11/12	C. 19/20	D. 41/42	E. 63/64		
3. Michael is playing a game that involves two quarters (25 cents each), three dimes (10 cents each), one nickel (5 cents), and four pennies (1 cent each). He flips each of the coins once, and wins all of the coins that land heads up. If all of the coins are fair coins (the probability of landing heads up is $\frac{1}{2}$ and the probability of landing tails up is also $\frac{1}{2}$), what is the probability (to the nearest hundredth) that he will win at least fifty cents?						
A. 0.40	B. 0.41	C. 0.42	D. 0.46	E. 0.50		
4. Find the sum of all of the distinct positive five digit numbers that can be formed by permuting the digits 1, 3, 5, 7, and 8 (13578, 58371, 83517, 18753, etc.).A. 1,599,984B. 6,066,540C. 6,399,936D. 15,999,840E. 31,999,680						
5. There are 150 socks in a bin: 30 blue, 10 pink, 20 green, 40 black, and 50 white. Jerry randomly pulls socks out of the drawer, one at a time, and does not replace them. Let <i>m</i> be the minimum number of socks that he would need to pull out to guarantee that he has at least one matching (same color) pair. Let <i>M</i> be the minimum number of socks that he must pull out to guarantee that he has at least one sock of each color. Find the product of <i>m</i> and <i>M</i> . A. 30 B. 66 C. 350 D. 705 E. 846						
6. Assume that s	$in(x) + \cos(x) = 1/4$. What is the value	e of $\sin^3(x) + \cos^3(x)$);		
A. 5/26	B. 11/32	C. 31/64	D. 47/128	E. 59/256		
			7 = 2017. Find <i>x</i> + y D. 62			
8. How many different ordered 4-tuples of nonnegative integers (a, b, c, d) satisfy the						
inequality $a + b + A$. 816	$c + d \le 14$? B. 2380	C. 3060	D. 3468	E. 3876		
A. 810	D. 2300	C. 3000	D. 3408	E. 3070		
9. Three people (X, Y, Z) are in a room with you. One is a knight (knights always tell the truth), one is a knave (knaves always lie), and the other is a spy (spies may either lie or tell the truth). X says "I am not a spy.", Y says "X is a knave.", and Z says "Y is a spy." Which of the following correctly identifies all three people?						
A. X is the spy.	B. X is the spy.	C. X is the knight	D. X is the knight	E. X is the knave.		
Y is the knight. Z is the knave.	Y is the knave.	Y is the knave.	Y is the spy.	Y is the spy.		
10. Suppose <i>a</i> , <i>b</i> , and <i>c</i> are integers. What is the sum of the reciprocals of the five complex solutions of the equation $x^5 + ax^4 + bx^3 + cx^2 - 12x + 8 = 0$?						
A. $-\sqrt{3}/2$	$a_{1}^{1} = a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + a_{3$	$bx^3 + cx^2 - 12x + 8$ C. $2/\sqrt{3}$	8 = 0? D. 4/7	E. 3/2		

11. Let T_n be the number of different ways that a $2 \times n$ grid can be covered by <i>n</i> indistinguishable dominos (1×2 rectangles) with no overlaps or gaps. For example, $T_2 = 2$ is illustrated on the right. Find $T_1 + T_2 + T_3 + T_4 + T_5 + T_6$. A. 19 B. 32 C. 36 D. 53 E. 64						
	= AC = 25 and BC erior of ΔABC to ea B. 19/4					
	probability <i>p</i> of head three flips with th B. 1/8	-	either 3 heads o		- •	
14. Consider a data set that consists of positive integers less than 51. There is exactly one 1 in the data set, and every other integer appears twice as many times as its predecessor appears (so there are exactly two 2s, exactly four 3s, exactly eight 4s, exactly sixteen 5s, etc.) What is the median of this data set?						
A. 48	B. 49	C. 49.5	D. 50	E. 51		
15. Suppose $g\left(\frac{1}{x}\right)$ A. 441/23	$=\frac{x^2}{2+x}$. Find $g(g(3)$ B. 49/9	3)). C. 9/5	D. 81/95	E. 25/2	207	
16. Let N be the greatest 3-digit positive integer that divides all 4-digit numbers with identical digits (those of the form aaaa). Let M be the greatest positive integer that cannot be written as $3x + 7y$ for some nonnegative integers x and y. Find M+N.A. 99B. 110C. 112D. 120E. 121						
17. Consider $ax^2 + bx + c = 0$, where <i>a</i> is a nonzero rational number and <i>b</i> and <i>c</i> are real numbers. Determine which (if any) of the following statements are true for all possible values of <i>a</i> , <i>b</i> , and <i>c</i> .						
I. If both solutions to this equation are rational, then $b^2 - 4ac$ must be equal to the square of a rational number. II. If $b^2 - 4ac$ is equal to the square of a rational number, then both solutions to this equation must be rational. A. Both B. Only I C. Only II D. Neither E. Cannot be determined						
18. Find the area of a semicircle inscribed in an equilateral triangle of side length 5. The diameter of the semicircle lies on one side of the triangle with its center at the midpoint of that side, and the semicircle is tangent to the other two sides.						
A. 29π/8	B. 2 <i>π</i>	C. 75π/32	D. 25π/4	E. 75π/	8	
19. Suppose that $f(x) = \frac{x^2 - 16}{ax + b}$ for some real numbers <i>a</i> and <i>b</i> , and that $f(x)$ has an oblique asymptote of $y = 3x + 7$. Find <i>f</i> (-3).						
A. 65/9	B. 63/16	C. 35/9	D7/16	E35/	9	
20. How many positive integers less than or equal to 1000 have an equal number of even and odd factors? For example, 10 would be counted since it has two odd (1 and 5) and two even (2 and 10) factors.						
A. 100	B. 125	C. 200	D. 250	E. 500		

Test #1	AMATYC Student Mathematics League	October/November 2017

- 1. A
- 2. D
- 3. B
- 4. C
- 5. E
- 6. D
- 7. A
- 8. C
- 9. C
- 10. E
- 11. B
- 12. D
- 13. C
- 14. D
- 15. A
- 16. C
- 17. B
- 18. C
- 19. B
- 20. D