1. Plug in: $f(g(1))-g(f(1))=f(2)-g(-1)=1-(-2)=3$. (Answer: E)
2. $(2$ choices for non-zero first digit $) \cdot(3$ choices where to place other non-zero digit) $=6$. (Answer: A)
3. Draw a picture to see the sum is $\arctan (1)+\arctan (1 / 2)+\arctan (1 / 3)$. Use a calculator or identity to see this is 90°. (Answer: C)
4. If x and y are the costs of the two horses, then $200=.8 x \Longrightarrow x=250$. Breaking even means $(200-250)+.25 y=0 \Longrightarrow y=50 / .25=200$, so $x+y=450$. (Answer: B)
5. $A(17,49)=\{17,18, \ldots, 17+49-1=65\}$ and $A(49,17)=\{49,50, \ldots, 49+17-1=65\}$, so 65 . (Answer: C)
6. $M=\sum_{n=1}^{k} \ln (a n /(b n))=\sum_{n=1}^{k} \ln (a / b)=k \ln (a / b)=\ln (a / b)^{k} \Longrightarrow N=(a / b)^{k} \Longrightarrow P=a / b$. (Answer: A)
7. $x=\left(x^{5} \cdot x^{5} \cdot x^{5}\right) /\left(x^{7} \cdot x^{7}\right)=\left(x^{8} \cdot x^{8}\right) /\left(x^{5} \cdot x^{5} \cdot x^{5}\right)$, so I and III both imply that x is rational, but II does not (for example, $x=\sqrt{2}$ is irrational, but $x^{6}=8$ and $x^{8}=16$ are rational). (Answer: B)
8. There are 999 positive integers less than 1000 . Of these, $\left(\frac{1}{3}-\frac{1}{9}\right)(999)=222$ are divisible by 3 but not 9 , and half of these are not even, so the probability is $111 / 999=1 / 9$. (Answer: B)
9. If r and s are solutions, then $x^{2}+3 x+c=(x-r)(x-s)=x^{2}-(r+s) x+r s$. Equality of coefficients $\Longrightarrow r+s=-3$ and $c=r s$. Since $r^{2}+s^{2}=33$, we have $9=(-3)^{2}=(r+s)^{2}=r^{2}+2 r s+s^{2}=$ $33+2 c \Longrightarrow c=-12$. (Answer: B)
10. Joe can drop the first ball from height 12 . If the first breaks at 12 , he can drop the second ball from heights 1,2 , etc. until either it breaks or survives a drop from height 11; if the first does not break at 12 , he can redrop it from height $23=12+11$. If the first breaks at 23 , he can drop the second ball from heights 13,14 , etc. until either it breaks or survives a drop from height 22 ; if the first does not break at 23 , he can redrop it from height $33=12+11+10$. And so on. In this way, Joe can determine with certainty if the greatest height is less than $78=12+11+\cdots+2+1$. (Answer: E)
11. Let P be the unique point on $M T$ so that $C P T Y$ is a square with side length 63 . This square has area $63^{2}=3969$, and the right triangle $M P C$ has area $\frac{1}{2}(79-63) \cdot 63=504$. The hypotenuse of $M P C$ has length $\sqrt{16^{2}+63^{2}}=65$, so the remaining triangle $M A C$ is a $3: 4: 5$ triangle rescaled by 13 , so it is a right triangle with area $\frac{1}{2}(52)(39)=1014$. The total area is $3969+504+1014=5487$. (Answer: A)
12. Each such set consists of six distinct nonnegative integers. The median is 5 , so three numbers are below 5 and three are above (none can equal 5). Therefore, the highest min is 2 and (\min , \max) $=$ $(2,8),(1,9)$, or $(0,10)$. Since each min/max pair has sum 10 and the average of all six is 5 , the other four numbers have sum 20 . We can list all sets which meet these conditions: $(2,3,4,6,7,8),(1,2$, $3,7,8,9),(1,2,4,6,8,9),(1,3,4,6,7,9),(0,1,2,8,9,10),(0,1,3,7,9,10),(0,1,4,6,9,10)$, $(0,2,3,7,8,10),(0,2,4,6,8,10),(0,3,4,6,7,10)$. (Answer: A)
13. Since $x^{2}+2 x+2=(x+1)^{2}+1>0$ for all real x, the equation is equivalent to $x^{3}+4 x^{2}-6 x-22=$ $\pm\left(x^{2}+2 x+2\right)$. The $(+)$ equation is equivalent to $x^{3}+3 x^{2}-8 x-24=0 \Longrightarrow\left(x^{2}-8\right)(x+$ $3)=0 \Longrightarrow x=-3, \sqrt{8},-\sqrt{8}$. The $(-)$ equation is equivalent to $x^{3}+5 x^{2}-4 x-20=0 \Longrightarrow$ $\left(x^{2}-4\right)(x+5)=0 \Longrightarrow x=-5,2,-2$. The sum of the absolute values of these solutions is $3+2 \sqrt{8}+5+2 \cdot 2=12+2 \sqrt{8}=12+4 \sqrt{2}$, so $a+b+c=12+4+2=18$. (Answer: E)
14. Apart from 999 , the digits of such a number add to 9 , so it is easy to list them: $117,135,153,171$, $315,333,351,513,531,711$. So there at 11 in all. (Answer: D)
15. Since only the slope matters, we may as well consider $y=2 x$ and $y=-3 x$, and $\alpha=\angle A O B$, where $A=(1,2), O=(0,0)$, and $B=(-1,3)$. The y-axis splits α into angles with tangents of $1 / 2$ and $1 / 3$, so $\tan \alpha=\left(\frac{1}{2}+\frac{1}{3}\right) /\left(1-\frac{1}{2} \cdot \frac{1}{3}\right)=5 / 5=1$. (Answer: C)
16. For $x \geq 0$, the equation becomes $(y-x)^{2}=0 \Longleftrightarrow y=x$ which intersects the unit circle once for $x>0$. For $x \leq 0$, the equation becomes $y^{2}-x^{2}=0 \Longleftrightarrow|y|=|x|$ which intersects the unit circle twice for $x<0$. So there are 3 intersections in all. (Answer: D)
17. $A=(a, f(a))$ and $B=(b, b)$ where $(b-f(a)) /(b-a)=-1 \Longrightarrow b=(a+f(a)) / 2$. So the distance from A to B is $\sqrt{2((f(a)-a) / 2)^{2}}=\sqrt{2}(f(a)-a) / 2$. (Answer: C)
18. The given dimensions imply that $S Q R$ is a 45-45-90 triangle and $S Q P$ is a 30-60-90 triangle. Since these right triangles share the hypotenuse $Q S$, this hypotenuse is the diameter of a circle which circumscribes the quadrilateral. We have $\angle R T S=\angle Q T P=180-\angle P Q T-\angle Q P T=180-\angle P Q S-$ $\angle Q P R=180-60-(90-\angle R P S)=30+\angle R P S$.
Let C be the center of the circle, so $\angle R C S=90$ since triangle $Q R S$ is isoceles. Since they subtend the same arc, $\angle R P S=\frac{1}{2} \angle R C S=45$, so $\angle R T S=30+45=75$. (Answer: D)
19. Some experimenting makes clear that the non-circumfactorable numbers are those of the form $p q$, with $p \neq q$ primes. The possibilities for $p q<200$ with $p<q$ are $2 q, 3 q, 5 q, 7 q$, and $11 q$, of which there are $24+16+9+5+2=56$ in all. (Answer: D)
20. The hypotenuse of such a right triangle is a diameter of the circle, so there are $1003 \cdot 2004$ such right triangles (2006/2 choices of diameter, then 2004 choices for the third corner). Since 3 is not a factor of 2006 , no such triangles are equilateral, so each such isoceles triangle has a unique vertex, so there are $2006 \cdot 1002$ isoceles triangles (2006 choices of vertex, then $(2006-2) / 2$ choices for the base). Since $\#($ right triangles $)=2 \cdot 1002 \cdot 1003=\#$ (isoceles triangles), $R=I$ and $|R-I|=0$. (Answer: A)
