1. (E) $g(f(f(1)))=g(f(2))=g(5)=25$
2. (D) From the previous average, if T represents the total miles, $39000=T / n$. With the new car, $36400=T /(n+1) \Rightarrow T=39000 n=36400(n+1) \Rightarrow n=14$
3. (C) $\log x, \log x^{2}, \log x^{3}, \log x^{4}, \ldots=\log x, 2 \log x, 3 \log x, 4 \log x, \ldots$
4. (C) Let the numbers, in order, be $a_{1}, a_{2}, \ldots, a_{7}$. We know $a_{4}=20$. The largest possible value for a_{7} is achieved by setting the other unknown integers to their smallest possible values: $a_{1}=1, a_{2}=$ $2, a_{3}=3, a_{5}=21, a_{6}=22$. The average is 20 so the sum must be $140 \Rightarrow 69+a_{7}=170 \Rightarrow a_{7}=71$
5. (C) Since the fraction is a terminating decimal, the prime factors of AT must contain only 2's and 5 's. Of the choices, only 16 and 25 remain. Since AM $<$ AT and they have no common factors, trial and error is reasonable. $\mathrm{AM}=21, \mathrm{AT}=25, \mathrm{TC}=84$
6. (D) $P=20$ is achieved by tearing out one row of four stamps connected to one additional stamp from an adjacent row. $p=14$ is achieved by tearing out one column of five stamps.
7. (A) $\log _{s t} e^{5.4}=\frac{\ln e^{5.4}}{\ln s t}=\frac{5.4}{\ln s+\ln t}=\frac{5.4}{0.6+0.9}=3.6$
8. (B) The symmetry requires $f(-2)=-3.6$ is 8 units from -2 so $f(6)=-3$. The symmetry implies $f(4)=-f(-4)$, but the period requires $f(4)=f(-4)$. It follows that $f(4)=0$.
9. (D) The graphs don't intersect when the system $\left\{\begin{array}{l}x+y=k \\ x y=k\end{array}\right.$ has no solution. By substitution, $x+\frac{k}{x}=k \Rightarrow x^{2}-k x+k=0$. This equation has no solution when its discriminant is negative, $k^{2}-4 k<0$, which has three integer solutions, 1,2 , and 3 .
10. (A) The area representing all points $\sqrt{2}$ units from the diagonals is the four isosceles right triangles shaded in the figure shown here. The hypotenuse of each is 12 so each leg is $6 \sqrt{2}$. The probability is the shaded area divided by the total area of the square.
11. (B) The one-to-one function f will only cross its inverse when $y=$ x. $a=4, b=12, c=-8$.
12. (A) $\cos (\arctan (x))=x \Rightarrow \frac{1}{\sqrt{1+x^{2}}}=x \Rightarrow x^{4}+x^{2}-1=0 \Rightarrow x^{2}=$ $\frac{-1+\sqrt{5}}{2}$

13. D
14. B
15. (D) The number of acres can be represented: $A\left(\frac{3}{4}\right)^{n}+1500\left(\frac{3}{4}\right)^{n-1}+1500\left(\frac{3}{4}\right)^{n-2}+1500\left(\frac{3}{4}\right)^{n-3}+$ $\ldots+1500=A\left(\frac{3}{4}\right)^{n}+1500 \sum_{i=0}^{n-1}\left(\frac{3}{4}\right)^{i}$. As $n \rightarrow \infty$, this sum approaches 6000 .
16. (B)
17. (E) $f(x)=\frac{(x-4)(x+1)}{x+1}=x-4, x \neq-1 \Rightarrow f^{-1}(x)=x+4, x \neq-5 \Rightarrow f^{-1}(x)=\frac{(x+4)(x+5)}{x+5}$
18. (C)
19. (D) The pentagon must be regular. It consists of 5 congruent triangles with height 3 (the radius of the circle). $A=5\left(\frac{1}{2} b h\right) \Rightarrow 42=5\left(\frac{1}{2} b(3)\right) \Rightarrow b=5.6 \Rightarrow$ the perimeter is 28 cm .
20. (E) Take the tangent of both sides, use the sum of angles formula for tangent and solve for x. $x=3$.
