1. (E) $f(2)=f(3-1)=3^{2}+1$
2. (A) $223^{\circ}-180^{\circ}=43^{\circ} \Rightarrow 40 / 10=4$
3. (B) $4^{3}+6^{3}+12^{3}=2008$
4. (E) Factors of $16:(\pm 1, \pm 16),(\pm 2, \pm 8),(\pm 4, \pm 4) ; b$ could be the sum of any of these.
5. (D) $f(x)-f(2 y)=x^{2}-2 x+4-4 y^{2}+4 y-4=x^{2}-2 x-4 y^{2}+4 y=$ $x^{2}+2 x y-2 x-2 x y-4 y^{2}+4 y=x(x+2 y-2)-2 y(x+2 y-2)=(x-2 y)(x+2 y-2)$
6. (E) Draw three radii as shown in the figure and create the right triangle with sides a, b, and c. If the side of the square is $x, a=x / 2, b=x-20$, and $c=20$.

Problem 6 Use Pythagorean formula and solve for x.
7. (E) Number of outcomes from three coin flips: $2^{3}=8$, number of ways to get two A's and one M: $3 \Rightarrow P(\mathrm{AMA})=3 / 8$. Number of unique outcomes from the die: $3^{3}=27$, number of ways to get one T , one Y , and one $\mathrm{C}: 3!=6 . \Rightarrow P(\mathrm{TYC})=6 / 27 . P(\mathrm{AMA}) \cap \mathrm{P}(\mathrm{TYC})=(3 / 8)(6 / 27)$.
8. (C) $\left(\log _{624} 625\right)\left(\log _{623} 624\right)\left(\log _{622} 623\right) \cdots=\left(\log _{623} 624^{\log _{624} 625}\right)\left(\log _{622} 623\right) \cdots$
$=\left(\log _{623} 625\right)\left(\log _{622} 623\right) \cdots$ Repeat until you have $\log _{5} 625=4$
9. (B) AMATYC written 16 times plus AMAT. There are 34 A's $\Rightarrow \frac{34}{100} \cdot \frac{33}{99} \cdot \frac{32}{98} \approx 0.037$
10. (D) $600<{ }_{5} C_{2} \cdot{ }_{x} C_{2}=10 \cdot \frac{x!}{3!(x-3)!} \Rightarrow x(x-1)(x-2)>360$. From here trial and error using the answers provided is most efficient.
11. 42. Let D be the distance to work. time $=$ distance/rate: $\frac{D / 2}{S}+\frac{D / 2}{S+8}+\frac{D}{S+14}=1.67\left(\frac{D}{S}\right)$ $\Rightarrow \frac{1}{S+8}+\frac{2}{S+14}-\frac{2.34}{S}=0$. solve for S.
12. (C) Can be reduced to $6,9,11 \mathrm{lb}$ bags for a total of 500 lbs . Answer: 8012 -lb bags, one $18-\mathrm{lb}$ bag and one 11-lb bag.
13. (C)
14. (B)
15. (D) The pattern is: G G G R G G G R... G G G R G. Three greens for every red with an additional green at the end.
16. (A) $1.5<b / 11<1.8 \Rightarrow b \in\{17,18,19\} ; 1.5<c / 15<1.8 \Rightarrow c \in\{23,24,25,26\}$. Use $1.5 b<c<1.8 b$ to determine $b=17$ and $c=26$
17. (D)
18. (D) Let r be this distance. From the figure shown, $\mathrm{AM}=\sqrt{25^{2}-7^{2}}=24$. From similar triangles, $\triangle \mathrm{APN} \sim \triangle \mathrm{ABM}, \frac{7}{25}=\frac{x}{24-x} \Rightarrow x=\frac{21}{4}$
19. (E) 361,529 , and 784
20. (C)

