1.		After as An	Ed e h. 1	eats 20% Find Ed'	o of a p s origi	oie an nal ar	d Anl noun	n eats t of p	s 40% ie as a	of a p a perc	oie, Ed entage	has t e of A1	twice as nh's ori	s muc iginal	h pie left amount.
A.	12	0	В.	125	C. 140)	D. 1	150	E.	160					
2.		The e	xpre	ession a l	#b = a	b² + a	for in	ntege	rs a, b	o > 0.	If (a#l	o)#3 =	= 250, f	ind a	+ b.
A.	6		В.	7	C.	8		D.	9		E.	10			
3.		Alicia 1-1-1	alw -1, 1	ays clim 1-2, 1-2	bs ste 2-1, 2-	ps 1, -1-1, 2	2, or 2-2, o	4 at ; r 4. 1	a time In how	. For many	examj y ways	ple, sl can s	he clim she clir	bs 4 : nb 10	steps by steps?
A.		81	B.	120	C.	144	D.	150	E.	169)				
4.		The s small	um est s	of six co such n i	onsecu s 2. F	tive p `ind tł	ositiv ne su	re inte m of	egers l the ne	beginr ext tw	ning at o sma	: n is llest s	a perfe such n'	ect cu s.	be. The
A.	67	'9		B. 68	0		C. 68	81		D.	682		E.	683	
5.	5. The sum of the infinite geometric series S is 6, and the sum of the series whose terms are the squares of the terms of S is 15. Find the sum of the infinite geometric series with the same first term and opposite common ratio as S.														
A.	2		В.	2.5	C. 3		D.	3.5	E.	4					
6.	6. When 15 is added to a set of 10 numbers, the median changes from 6 to 8. Find the median of the new set if 15 is replaced by 7.														
A	4		В. 5	5	C. 5.5	5	D. 6		E. 7	7					
7.	7. Rectangle SMLA has SM = 5 and ML = 10. If the two unit squares at S and M are removed, leaving 48 squares, how many of the following four sets of rectangles can exactly cover SMLA: 24 1x2s, 16 1x3s, 12 1x4s, 8 2x3s?														
A.	0		В.	1	C. 2		D.	3	E.	4					
8.		In ∆S small	ML, est v	SM = 17 value of	' and I SL for	ML = 1 which	l2. If 1∆SM	f SL is ⁄IL ha	s an ir Is an c	nteger obtuse	greate e angle	er tha e.	n SM o	r ML,	find the
A.	12		В.	20		C. 21	L	D.	22		E.	28			
9.		A poly and P	ynor ?(3) =	nial with = 144. F	i nonn ind P(-	egativ -2).	e inte	eger o	coeffici	ients I	has P((0) = 3	s, P(1) =	= 8, P	(2) = 39,
A.		-7	В.	-5	C.	-3	D.	-2	E.	-1					
10.		Each N fori	digi n a	t of a 10 prime n	-digit 1 umber	numb . Fin	er N i d the	is eith final	ner a 1 two d	, 2, o ligits d	r 3. E of the s	very (small	3 conse est suc	cutiv h N.	e digits of
A.		11		B.	13		C.	21		D.	23		E.	31	
11.		Multi yields	plyir 96,	ng the co 180, 32	orrespo 4, 567	onding 7, 1	g tern Find 1	ns of the n	a geor ext ter	metric m of 1	and a the new	an ari w seo	thmetio quence	c sequ	lence

AMATYC Student Mathematics League

February/March 2011

Test #2

A. 960 B. 972 C. 980 D. 984 E. 988

February/March 2011					AMATYC Student Mathematics League								Page 2
12. If $\log_x y + \log_y x = 2.9$ and $xy = 128$, find $x + y$.													
A. 3	2	B.	36		C. 4	40		D.	48		E.	64	
13. The equation $a^5 + b^2 + c^2 = 2011$ (a, b, c positive integers) has a solution in which two of the three numbers are prime. Find the value of the nonprime number.													
А.	38	B.	40	C.	42	D.	44	E.	46				
14. A palindrome is a number like 121 or 1551 which reads the same from right to left and from left to right. How many 4-digit palindromes are divisible by 17?													
A. 2		B. 4	4 (C. 5		D. 6		E. 8	3				
15. Six numbers are selected from 0, 1,, 6 and arranged in a 2x3 grid so that each row is increasing from left to right and each column is increasing from top to bottom. Find the number of such different arrangements.													
A. 24		B. 28	3	C. 3	0	D. 3	5	Е.	42				
16. The increasing sequence of positive integers a_1, a_2, a_3, \cdots satisfies the equation $a_{n+2} = a_n + a_{n+1}$ for all $n \ge 1$. If $a_7 = 160$, find a_8 .													
A. 2	57	B. 2	258	C.	259	D.	260	E.	261				
17.	17. For how many integers $1 \le n \le 2011$ is the fraction $\frac{n^2 + 7}{n + 4}$ NOT in lowest terms?												
А.	85	В	8. 86	C	. 87	Γ). 88		E. 89)			
18. Ten sets of coins each contain one penny, and the <i>k</i> th set has $2k$ dimes for $1 \le k \le 10$. If one coin is selected at random from each set, find the probability that the number of pennies in the selection is odd.													
Α.	10/21		В.	11/2	3	C.	1/2		D. 1	1/21	Ε	. 12/23	3
 19. Every set {1, 2, 3,, n} can be split into sets so that each set sums to the same total. For example, {1,, 7} = { 1, 2, 4, 7} ∪ {3, 5, 6}; each set sums to 14. Find the largest number of such equal sum sets into which {1, 2, 3,, 15} can be split. 													
А.	4	В.	5	C.	6	D.	8	E.	10				
20.	If the proba	e nine ability	intege that r	rs 2 tł no two	nrough prime	10 a num	re arra bers a	ingeo re ne	l at ra ext to	ndom in each oti	n a r her.	ow, fin	d the
A.	$\frac{1}{14}$		B.	$\frac{2}{21}$		C.	$\frac{5}{42}$		D.	$\frac{1}{7}$		E.	$\frac{1}{6}$

Test $#2$	AMATYC Student Mathematics League	February/March 2011
1. D		
2. B		
3. E		
4. A		
5. B		
6. E		
7. B		
8. C		
9. E		
10. E		
11. B		
12. B		
13. C		
14. C		
15. D		
16. C		
17. C		
18. A		
19. D		
20. C		