1. Only the percentage is asked for, so assume Anh starts with 100 units of pie and ends up with 60; meanwhile, Ed starts with x units and ends up with $0.8 x=2(60) \Longrightarrow x=150$. (Answer: D)
2. $a \# b=a\left(b^{2}+1\right)$, so $250=(a \# b) \# 3=\left(a\left(b^{2}+1\right)\right) \# 3=a\left(b^{2}+1\right)\left(3^{2}+1\right)=10 a\left(b^{2}+1\right) \Longrightarrow a\left(b^{2}+1\right)=$ 25. Since $a, b>0$ are integers, the only solution is $(a, b)=(5,2) \Longrightarrow a+b=7$. (Answer: B)
3. Let $A_{n}=$ \#ways Alicia can climb n stairs. $A_{4}=6$ is given and $A_{1}=1, A_{2}=2$, and $A_{3}=3$ are easy to find. If $n>4$, Alicia either begins with a step of size 1 and has A_{n-1} ways to continue, she begins with a step of size 2 and has A_{n-2} ways to continue, or she begins with a step of size 4 and has A_{n-4} ways to continue. Thus, $A_{n}=A_{n-1}+A_{n-2}+A_{n-4}$ for $n>4$. Start with $n=10$ and repeatedly apply this formula to find A_{10} in terms of A_{1}, A_{2}, A_{3}, and $A_{4}: A_{10}=A_{9}+A_{8}+A_{6}=$ $\left(A_{8}+A_{7}+A_{5}\right)+A_{8}+A_{6}=2 A_{8}+A_{7}+A_{6}+A_{5}=2\left(A_{7}+A_{6}+A_{4}\right)+A_{7}+A_{6}+A_{5}=3 A_{7}+3 A_{6}+A_{5}+2 A_{4}=$ $\cdots=18 A_{4}+13 A_{3}+6 A_{2}+10 A_{1}=18(6)+13(3)+6(2)+10(1)=169$. (Answer: E)
4. The sum starting at n is $6 n+15$, which should be a perfect cube, so use a calculator to create a table of values for $n=Y=\left(X^{3}-15\right) / 6$ and look for integers to quickly find $6(119)+15=729=9^{3}$ and $6(560)+15=3375=15^{3}$, so the desired sum is $119+560=679$. (Answer: A)
5. If S has first term a and common ratio r, then the sum of S is $\frac{a}{1-r}=6$, the sum of the square series is $\frac{a^{2}}{1-r^{2}}=15$, and the sum of the opposite series is $\frac{a}{1+r}=\frac{\frac{a}{1+r} \cdot \frac{a}{1-r}}{\frac{a}{1-r}}=\frac{\frac{a^{2}}{1-r^{2}}}{\frac{a}{1-r}}=\frac{15}{6}=2.5$. (Answer: B)
6. If the original numbers are $x_{1} \leq x_{2} \leq \cdots \leq x_{10}$, then the original median is $\frac{x_{5}+x_{6}}{2}=6$ and, since adding 15 to the set raises the median, the new median is $x_{6}=8 \Longrightarrow x_{5}=4$. Since 7 is between 4 and 8,7 is the final median. (Answer: E)
7. It is easy to see that a covering is possible with 1×3 tiles, but impossible with 1×4 tiles or 2×3 tiles. It is also impossible with 1×2 tiles, since if the squares on the board are colored like a chess board, there will be 25 of one color and 23 of the other, but a covering by 1×2 tiles requires an equal number of each color, since each tile covers exactly one square of each color. (Answer: B)
8. For $M L \geq 13, \angle L$ and $\angle S$ are acute, so the triangle is obtuse iff $\angle M$ is. By the law of cosines, $a^{2}+b^{2}=c^{2}+2 a b \cos C$, with $a=12, b=17, c=S L$, and $C=\angle M, \cos (\angle M)=\frac{12^{2}+17^{2}-S L^{2}}{2(12)(17)}$. Thus, $\angle M$ is obtuse iff $\cos (\angle M)<0$ iff $S L>\sqrt{12^{2}+17^{2}} \approx 20.8$, so the answer is 21 . (Answer: C)
9. Four conditions are given, so try $P(x)=a x^{3}+b x^{2}+c x+d$ for some a, b, c, d. Use the given values to obtain four equations: $P(0)=d=3, P(1)=a+b+c+d=8, P(2)=8 a+4 b+$ $2 c+d=39$, and $P(3)=27 a+9 b+3 c+d=144$. Use $d=3$ to reduce to a 3×3 system and solve to find $(a, b, c, d)=(8,-11,8,3)$. This is not valid, since $-11<0$, but for any M, $P(x)=8 x^{3}-11 x^{2}+8 x+3+M x(x-1)(x-2)(x-3)$ also has the given values at $x=0,1,2,3$. Expand to $P(x)=M x^{4}+(8-6 M) x^{3}+(11 M-11) x^{2}+(8-6 M) x+3$, which has non-negative integer coefficients iff $M=1$, so $P(x)=x^{4}+2 x^{3}+2 x+3$ works and $P(-2)=-1$. (Answer: E)
10. 113 is the lowest such prime, so N should start with 113.131 is the lowest such prime that starts with 13 , so N should begin with 1131.311 is the lowest prime that starts with 31 , so N should begin with 11311. And so on, to find the smallest N is 1131131131 , which has last two digits 31. (Answer: E)
11. Let $a, a+d, a+2 d, \ldots$ and $b, b r, b r^{2}, \ldots$ be the unknown arithmetic and geometric sequences, so $a b=96,(a+d) b r=180,(a+2 d) b r^{2}=324,(a+3 d) b r^{3}=567$, and the unknown next product is $x=(a+4 d) b r^{4}$. Multiply each of these equations by r and subtract from the next one to obtain the "bdr-equations", $b d r=180-96 r, b d r^{2}=324-180 r, b d r^{3}=567-324 r$, and $b d r^{4}=x-567 r$. Since $r=\frac{b d r^{2}}{b d r}=\frac{324-180 r}{180-96 r}$ and $r=\frac{b d r^{3}}{b d r^{2}}=\frac{567-324 r}{324-180 r}$, equate these and simplify to obtain $4(9-5 r)^{2}=$ $3(7-4 r)(15-8 r) \Longrightarrow 4 r^{2}-12 r+9=0 \Longrightarrow r=\frac{3}{2}$. The last two $b d r$-equations imply $x=$ $567 r+b d r^{4}=567 r+r\left(b d r^{3}\right)=567 r+r(567-324 r)=1134 r-324 r^{2}=1134(3 / 2)-324(3 / 2)^{2}=972$. (Answer: B)
12. Let $c=\log _{x} y$, so $\log _{y} x=c^{-1}$ and $c+c^{-1}=2.9 \Longrightarrow c^{2}-2.9 c+1=0 \Longrightarrow c=\frac{2}{5}$ or $\frac{5}{2}$. By symmetry, the choice is irrelevant, so take $c=\frac{2}{5} \Longrightarrow \log _{x} y=\frac{2}{5} \Longrightarrow y=x^{2 / 5} \Longrightarrow 128=x y=$ $x^{7 / 5} \Longrightarrow x=128^{5 / 7}=32 \Longrightarrow y=128 / 32=4 \Longrightarrow x+y=36$. (Answer: B)
13. a must be $1,2,3$, or 4 , so $b^{2}+c^{2}$ must be $2010,1979,1768$, or 987 . The sum of two squares has remainder 0,1 , or 2 when divided by 4 , so only 2010 and 1768 are possible. Use the table feature on a calculator with $Y=\sqrt{1768-X^{2}}$ to quickly find that $2^{2}+42^{2}=1768$, so $(a, b, c)=(3,2,42)$ is a solution with two primes, and the nonprime is 42 . (Answer: C)
14. Use a table to make a list of values $Y=17 X$ and hunt for palindromes, OR note that the 4-digit palindrome $a b b a=a(1001)+b(110)=a(17 \cdot 59-2)+b(17 \cdot 6+8)=17(59 a+6 b)+2(4 b-a)$ is divisible by 17 iff $4 b-a$ is. The only possibilities for this are $(a, b)=(2,9),(3,5),(4,1),(7,6)$, and $(8,2)$, corresponding to the five palindromes $2992,3553,4114,7667$, and 8228. (Answer: C)
15. There are 7 choices for which number to omit and five ways to arrange the rest: Using 1-6 are chosen, these are $\begin{array}{ccccc}456 & 346 & 356 & 256 \\ 123 & 125 & 124, & 134,\end{array}$ and ${ }_{135}^{246}$. So there are $35=5 \cdot 7$ arrangements in all. (Answer: D)
16. $160=a_{7}=a_{6}+a_{5}=2 a_{5}+a_{4}=3 a_{4}+2 a_{3}=5 a_{3}+3 a_{2}=8 a_{2}+5 a_{1}$. By divisibility considerations, a_{1} is a multiple of 8 and a_{2} is a multiple of 5 and, since the sequence is increasing, the only possibility is $a_{1}=8$ and $a_{2}=15$, so the sequence is $8,15,23,38,61,99,160$, and $a_{8}=259$. (Answer: C)
17. Use polynomial division to find that $n^{2}+7=(n+4)(n-4)+23$, so the fraction is NOT in lowest terms precisely when 23 is a factor of $n+4$, i.e. $n=23 k-4$ for some $k=1,2,3 \ldots$ $n=23 k-4 \leq 2011 \Longrightarrow k \leq 87.6$, so there are 87 such integers. (Answer: C)
18. The probability that k pennies are chosen is the coefficient of x^{k} in the expansion of

$$
\left(\frac{1}{3} x+\frac{2}{3}\right)\left(\frac{1}{5} x+\frac{4}{5}\right) \cdots\left(\frac{1}{21} x+\frac{20}{21}\right)=\frac{(x+2)(x+4) \cdots(x+20)}{3 \cdot 5 \cdots 21} .
$$

Direct calculation is difficult, but for the test it is easy to eliminate options B, C, and E , since neither 2 nor 23 are in the denominator. Since the numerators of the coefficients of x, x^{3}, x^{5}, x^{7}, and x^{9} are all even, the numerator of the probability is even, so D is not correct and only A remains. (Answer: A)
19. The more subsets there are, the smaller the common sum is and, since some subset must contain 15 , the smallest possible common sum is 15 . This can be done with $\{15\} \cup\{1,14\} \cup\{2,13\} \cup \cdots \cup\{7,8\}$, so the largest number of common sum subsets is 8 . (Answer: D)
20. To assure that no prime follows another, first arrange the 5 non-primes, then assign each of the 4 primes to one of the 6 spaces before, between, or beyond the non-primes. There are $5!\cdot 6 \cdot 5 \cdot 4 \cdot 3=3(5!)^{2}$ ways to do this, and there are 9 ! arrangements in all, so the probability is $\frac{3(5!)^{2}}{9!}=\frac{5}{42}$. (Answer: C)

