1. The probability that the product of the numbers rolled on three fair six-sided dice is $\begin{array}{lllllllll}\text { prime is } & \text { A. } \frac{1}{36} & \text { B. } \frac{1}{24} & \text { C. } \frac{1}{16} & \text { D. } \frac{1}{12} & \text { E. } \frac{1}{8}\end{array}$
2. If $x^{2}+1$ is a factor of $6 x^{3}+5 x^{2}+P x+Q$, then $P+Q=$
A. 10
B. 11
C. 12
D. 13
E. 14
3. Call a date $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$ magical if $\mathrm{mm} \times \mathrm{dd}=\mathrm{yy}$. For example, $12 / 02 / 24$ is magical, but 02/05/11 and $7 / 15 / 05$ are not. How many of the following dates can NEVER be magical? January 31 February 29 March 31 April 30
A. 0
B. 1
C. 2
D. 3
E. 4
4. Suppose $a^{2}-b^{2}=91\left(a, b\right.$ integers). If $n=a^{2}+b^{2}<1000$, find the units digit of n.
A. 1
B. 3
C. 5
D. 7
E. 9
5. Let S be the set of all lines with equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ for which $\mathrm{m}+\mathrm{b}=36$. For how many of the elements of S are both the x - and y-intercepts integers?
A. 8
B. 9
C. 12
D. 15
E. 18
6. A bridge charges 2 -axled vehicles a $\$ 5$ toll and 3 -axled vehicles an $\$ 8$ toll. In an hour the bridge collected $\$ 741$ from 120 vehicles. If tolls were $\$ 1$ higher for 2 -axled and $\$ 2$ higher for 3 -axled vehicles, how much would the bridge have collected?
A. $\$ 888$
B. $\$ 908$
C. $\$ 926$
D. $\$ 934$
E. $\$ 1012$
7. Let a, b, and c be positive integers which satisfy $a^{3}+b^{3}+c^{2}=2012$. Find $a+b+c$.
A. 28
B. 30
C. 32
D. 34 E.
36
8. Tom, Dick, and Harry each have children. The sum of the number of Tom's children and the average of Dick's and Harry's children is 5 , while the sum of the number of Harry's children and the average of Tom's and Dick's children is 7. Find the total number of children in the three families.
A. 7
B. 8
C. 9
D. 10
E. 11
9. In the 5×5 grid at the right, each cell contains one of the digits 1 to 5 so that each row and each column has exactly one of each digit. Find the entry in row 3 , column 4.
A. 1
B. 2
C. 3
D. 4
E. 5

1	2			
2				
				5
			5	4

10. When the 2 -digit number $a a$ is multiplied by the 1 -digit number $b \neq a$, the result is the 3 -digit number cba. Find the sum of all possible values of $c b a$.
A. 264
B. 528
C. 759
D. 891 E.
1045
11. In the equation $x^{2}-\frac{10}{9} x+c=0$, one solution is the square of the other solution. If $c>0$ is the rational number $\frac{m}{n}$ in simplest terms, find $m+n$.
A. 25
B. 28
C. 32
D. 35
E. 38
12. Which of the following best describes the graph of $(x+y)^{2}=x^{2}+y^{2}$?
A. The empty set
B. A single point
D. two parallel lines
E. A circle
13. Sue and Thai are asked to multiply a positive integer a by a positive integer b and then add a positive integer c to the result. Sue mistakenly first multiplies by c and then adds b, while Thai mistakenly adds b and then multiplies by c. The correct answer was 29 , Sue got 59, and Thai got 80 . Find $a+b+c$.
A. 12
B.
14 C.
16
D. 18
E. 20
14. Let $A(2,1)$ and $B(10,7)$ be points in the xy-plane. Let R be the region in the first quadrant consisting of all points C for which $\triangle A B C$ has three acute angles. Find the area of R rounded to the nearest integer.
A. 11
B. 61
C. 71
D. 121
E. the area of R is infinite
15. Isosceles $\triangle A B C$ has base $A B=4$ and altitude $C P=6$. Choose point D with $\overleftrightarrow{A D} \perp \overleftrightarrow{A B}$, $A D=A B$, and $\overline{B D}$ intersecting $\overline{A C}$. Choose point E so that $\triangle A D E \cong \triangle A B C$ and $\overline{A E}$ intersects $\overline{B C}$. Find the area common to the two triangles.
A. 7
B.
7.2
C. $\quad 7.6$
D. 8.0 E.
8.4
16. How many positive integers not divisible by 6 have a base 6 representation which is the reverse of their base 9 representation?
A. 5
B. 6
C. 7
D. 8
E. more than 8
17. Let S be the set of all ordered triples ($\mathrm{p}, \mathrm{q}, \mathrm{r}$) of prime numbers for which the equation $p x^{2}+q x+r=0$ has at least one rational solution. How many primes appear in S at least seven times?
A. 0
B. 1
C. 2
D. 3
E. An infinite number
18. If $\cos \theta=\frac{7}{18}$ and $0^{\circ}<\theta<90^{\circ}$, the value of $\tan \frac{1}{4} \theta$ can be expressed as $\frac{\sqrt{m}}{n}$ where m has no perfect square factors >1. Find $m+n$.
A. 20
B. 22
C. 24
D. 26
E. 28
19. The Robotics Club has 12 members, 3 each who are freshmen, sophomores, juniors, and seniors. In each of the freshman and junior classes, 1 member is an engineer and two are in CS; in each of the sophomore and senior classes, 2 are engineers and 1 is in CS. Find the number of ways to have a committee of 6 members so that each class and each major is represented on the committee.
A. 492
B.
502
C. 540
D.
592 E.
594
20. The equation $x^{2}-11 y^{2}+23=10 x y$ has four solutions $\left(x_{i} y_{i}\right)$ in which both coordinates are integers. Find $\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\left|x_{4}\right|$.
A. 8
B. 40
C. 44
D. 46
E. 52

Test \#2 AMATYC Student Mathematics League February/March 2012

1. B
2. B
3. C
4. E
5. E
6. B
7. C
8. C
9. A
10. C
11. D
12. C
13. D
14. Correct for all students
15. B
16. B
17. C
18. B
19. D
20. C
