1. One die must be prime and the others 1 ; there are 3 choices for the prime $(2,3$, or 5$)$, and 3 choices for which die is prime, so 9 ways this can happen. There are 6^{3} outcomes possible, so the probability is $9 / 6^{3}=1 / 24$. (Answer: B)
2. For some A and $B, 6 x^{3}+5 x^{2}+P x+Q=\left(x^{2}+1\right)(A x+B)=A x^{3}+B x^{2}+A x+B$. Equate coefficients of like terms to find $P=A=6$ and $Q=B=5$, so $P+Q=11$. (Answer: B)
3. Of the four choices, the only magical possibilities are $01 / 31 / 31$ and $03 / 31 / 93 ; 02 / 29 / 58$ is not possible since leap years are divisible by 4. (Answer: C)
4. Assume without loss of generality that $a>b>0$. Since $a^{2}-b^{2}=(a-b)(a+b)=91=7 \cdot 13$, either $a-b=1$ and $a+b=91$, or $a-b=7$ and $a+b=13$. Therefore, $(a, b)=(46,45)$ or $(10,3)$; since $46^{2}+45^{2}>1000,(a, b) \neq(46,45)$ and $n=10^{2}+3^{2}=109$. (Answer: E)
5. The x - and y-intercepts are $-b / m$ and b. Since $m=36-b,-b / m=-b /(36-b)=b /(b-36)=$ $1+36 /(b-36)$, it must be that b and $36 /(b-36)$ are integers. Therefore, each element of S corresponds to exactly one positive or negative factor of 36 , and there are 18 of these. (Answer: E)
6. If x and y are the numbers of 2 - and 3 -axled vehicles, then $x+y=120$ and $5 x+8 y=741$; solve this system to find $(x, y)=(73,47)$, then calculate $6 x+10 y=6(73)+10(47)=908$. (Answer: B)
7. By cases. a is at most 12 , which leads to $b^{3}+c^{2}=2012-12^{3}=284$; the possibilities for b are $1,2, \ldots, 6$, but $284-b^{3}$ is not a square for any of these, so $a \neq 12$. If $a=11$, then $b^{3}+c^{2}=681$, so b is at most 8 , which leads to $c^{2}=169=13^{2}$, so $a+b+c=11+8+13=32$. (Answer: C)
8. Given $T+(D+H) / 2=5$ and $H+(T+D) / 2=7$, subtract and simplify to find $H=T+4$. Substitute into the first equation and simplify to obtain $3 T+D=6$. Since $T, D>0$ are integers, $T=1, D=3, H=5$, and the total number of children is 9 . (Answer: C)
9. Let $C_{i, j}=$ the value in row i, column j. Following the rules, determine by process of elimination that $C_{1,5}=3, C_{1,4}=4, C_{2,5}=1, C_{3,5}=2, C_{2,4}=3$, and $C_{3,4}=1$. (Answer: A)
10. $a a=a \cdot 11$, so the product with b is $a \cdot b \cdot 11=(a \cdot b) \cdot 10+(a \cdot b)$. For this to equal $c b a$, the ones digit of $a \cdot b$ must be a; the possibilities for this in this problem are $(a, b)=(2,6),(4,6),(5,3),(5,7),(5,9)$, and $(8,6)$, with corresponding products $a \cdot b \cdot 11=132,264,165,385,495,528$. These are all 3 -digit numbers with distinct digits, but the only ones with 2 nd digit equal to b are $264=44 \cdot 6$ and $495=55 \cdot 9$, so the answer is their sum, 759. (Answer: C)
11. Let r and r^{2} be the solutions, so $x^{2}-\frac{10}{9} x+c=(x-r)\left(x-r^{2}\right)=x^{2}-\left(r+r^{2}\right) x+r^{3}$ and, equating coefficients, observe that $c=r^{3}$ and $r^{2}+r=\frac{10}{9}$. This last equation has solutions $r=-5 / 3,2 / 3$, but $r^{3}=c>0$, so $r=2 / 3$ and $c=8 / 27$ and $m+n=35$. (Answer: D)
12. The equation simplifies to $x y=0$, so the solution set is the union of the x - and y-axes. (Answer: C)
13. Subtract Sue's equation, $a c+b=59$, from Thai's equation, $(a+b) c=80$, to obtain $b(c-1)=21$, so the possibilities for b and c are $(b, c)=(1,22),(3,8),(7,4)$, and (21,2). From Sue's (or Thai's) equation, reduce the possibilities to $(a, b, c)=(7,3,8),(13,7,4)$, and $(19,21,2)$; only the first of these gives the correct answer, $a b+c=29$, so the sum is 18 . (Answer: D)
14. R consists of the points in the first quadrant that are outside the circle C with diameter $\overline{A B}$ and between the lines which are tangent to C at A and B. The total area between the lines and in the first quadrant is 150 , the total area of the circle is $25 \pi \approx 78.54$, and the area of the portion of the circle below the x-axis is $25 \arcsin (3 / 5)-12 \approx 4.09$, so R has area $\approx 150-78.54+4.09=75.55 \approx 76$, which was not an option. (The exam writers likely forgot to add back the piece of circle of area 4.09, so they thought the answer was 71.46 , which rounds to 71 , which was C.) (Answer: correct for all)
15. In a coordinate system with $A=(0,0), B=(4,0)$, and $C=(2,6)$, show that $D=(0,4), E=(6,2)$, the line $\overline{B C}$ has equation $y=-3 x+12$, and the line $\overline{A E}$ has equation $y=x / 3$. Lines $\overline{B C}$ and $\overline{D E}$ intersect (along with the line $y=x$) at $F=(3,3)$, and $\overline{A E}$ intersects $\overline{B C}$ at $G=(3.6,1.2)$. The area of overlap is twice the area of $\triangle A F G$. Since $\overline{A E}$ is perpendicular to $\overline{B C}$, the area is $2(1 / 2) \sqrt{(0.6)^{2}+(1.8)^{2}} \sqrt{(3.6)^{2}+(1.2)^{2}}=7.2$ (Answer: B)
16. The integers $n=1,2,3,4,5$ satisfy the conditions since they are the same in both bases. If $n=[a b]_{6}$ is a two digit number in base 6 , where $1 \leq a, b \leq 5$, the conditions mean $6 a+b=a+9 b \Longrightarrow 5 a=8 b$, which is impossible, so there are no such 2-digit numbers in base 6 .
If $n=[a b c]_{6}$ is a three digit number in base 6 , where $0 \leq a, b, c \leq 5$ and $a, c \neq 0$, the conditions mean $36 a+6 b+c=a+9 b+81 c \Longrightarrow 3 b=5(7 a-16 c)$, so $b=0,5 ; b \neq 0$ since $7 a=16 c$ has no valid solution, so $b=5 \Longrightarrow 7 a=16 c+3$. Examine the cases $c=1,2,3,4,5$, to find the only three digit solution, $(a, b, c)=(5,5,2)$, i.e., $n=212$.
That makes 6 integers so far with the given property; in fact, there are no others, but this is more difficult to prove. To summarize: A number with d digits in base 6 is less than 6^{d}, and a number with d digits in base 9 is at least 9^{d-1}, so a number with the given property with d digits must satisfy $6^{d}>9^{d-1} \Longrightarrow d \leq 5$, so it is enough to check the $d=4$ and $d=5$ cases. The $d=4$ case reduces to showing that $215 a+27 b-75 c-728 d=0$ has no integer solutions with $0 \leq a, b, c, d \leq 5$ and $a, d \neq 0$; the $d=5$ case reduces to showing that $1295 a+207 b-45 c-723 d-6560 e=0$ has no integer solutions with $0 \leq a, b, c, d, e \leq 5$ and $a, e \neq 0$. Have fun! (Answer: B)
17. There is a rational solution if and only if the polynomial factors over the integers; if p and r are prime, this is only possible if $p x^{2}+q x+r=(p x+r)(x+1)$ and $q=p+r$, or if $p x^{2}+q x+r=$ $(p x+1)(x+r)$ and $q=p r+1$. Either way, if p and r are odd primes, then $q>2$ is even, so not prime; therefore, if (p, q, r) is in S, at least one of p and r is 2 , which means every triple in S is of the form $(2, m+2, m)$ or $(m, m+2,2)$ with m and $m+2$ prime, or of the form $(2,2 m+$ $1, m)$ or ($m, 2 m+1,2$) with m and $2 m+1$ prime. 2 occurs in many such triples (most likely infinitely many, but this has not been proved - look up twin primes and Sophie Germain primes), for example $(2,5,2),(2,5,3),(3,5,2),(2,7,3),(3,7,2)(2,7,5),(5,7,2),(2,11,5)$, and $(5,11,2)$. These examples show that 2 and 5 occur in at least seven triples in S. On the other hand, for any odd prime n, the only triples in S that might contain it are $(2, n+2, n),(n, n+2,2),(2,2 n+1, n),(n, 2 n+$ $1,2),(2, n, n-2),(n-2, n, 2),\left(2, n, \frac{n-1}{2}\right)$, and $\left(\frac{n-1}{2}, n, 2\right)$, but only four of these are in S when $n=3$, and for $n>5$, at most six of these can be in S since $n-2, n$, and $n+2$ are all prime only when $n=5$. So 2 and 5 are the only primes that appear in S at least seven times. (Answer: C)
18. You can use identities, but the easiest way is to use a calculator to find $\frac{m}{n^{2}}=\left[\tan \left(\frac{1}{4} \arccos (7 / 18)\right)\right]^{2}=$ $0.090909 \cdots=\frac{1}{11}$, so $\frac{\sqrt{m}}{n}=\frac{1}{\sqrt{11}}=\frac{\sqrt{11}}{11}$, so $m+n=11+11=22$. (Answer: B)
19. There are $C_{12,6}=924$ committees in all; of these, there are $C_{9,6}=84$ which have NO freshmen, 84 which have no sophomores, etc., there is only 1 which has NO freshmen or sophomores, 1 which has no freshmen or juniors, etc., only 1 which has no ENGR students, and only 1 which has no CS students. By the inclusion-exclusion principle, the number of committee which has at least one member of each class and major is $924-(4 \cdot 84+2 \cdot 1)+6 \cdot 1=592$. (Answer: D)
20. Subtract $10 x y$ from both sides and complete the square $x^{2}-10 x y=(x-5 y)^{2}-25 y^{2}$ to obtain $(x-5 y)^{2}-36 y^{2}+23=0$. Factor the difference of squares and rearrange to obtain $(11 y-x)(x+y)=23$. Since the solutions are integers and 23 is prime, the possibilities for the factors (not x and y) are $\pm(1,23)$ and $\pm(23,1)$. Each of these results in a system of equations with a unique solution; for example, $(1,23) \Longrightarrow 11 y-x=1$ and $x+y=23 \Longrightarrow(x, y)=(21,2)$. The other solutions are $(-21,-2)$ and $\pm(-1,2)$, so the answer is $21+21+1+1=44$. (Answer: C)
