Test #	2		TYC Student	t Mathemati	cs League	February/March 2013
1.	Ms. Pham writes 2 final exams, each with 25 problems. If the exams have 12 problems in common, how many problems does she write?					exams have 12
	A. 24	B. 26	C. 37	D. 38	E. 49	
2.	A triangle l even intege	has two side er, its length	s of length 8 must be	8.1 and 1.4.	If the length o	of the third side is an
	A. 2	B. 4	C. 6	D.8	E. 10	
3.	If (a, b) is	the solution	to the syste	em of equati	tions $\begin{cases} \pi x + (n + 3e)x \\ (\pi + 3e)x \end{cases}$	$\pi + e)y = \pi + 2e$ $+ (\pi + 4e)y = \pi + 5e'$
	$\Delta = 3$	R 1	C	0 D	1 F	3
	A3	D1	C.	0 D.	I E	. 3
4.	The year 20 are each re number is	013 has the educed by 1 a a factor of th	property tha and written t ne next. Fin	it when its o in increasin id the next	listinct prime fa g order (that is, year with this p	actors 3, 11, and 61 2, 10, 60) each property.
	A. 2014	B. 2015	C. 2016	D. 2017	E. 2018	
5.	If the lines axis, then A	with equation A. mb = 12	ons y = 2x + B. mb + 12	- b and y = = 0 C. m =	mx - 6 interseo 3b D. m + 3b	et at a point on the x- = 0 E. 3m = b
6.	Find the si	The smallest positive integer value of <i>n</i> for which $\frac{1}{a} + \frac{1}{b} = \frac{1}{n}$ has at least three				
	solutions (a, b) in integ	ers with $a \ge$	<i>b</i> > 0.		
	A. 3	B. 4	C. 5	D. 6	E. 8	
7.	The equati multiple of	equation $a^3 + b^2 + c^2 = 2013$ has a solution in positive integers for which b is a ltiple of 5. Find a + b + c for this solution.				
	A. 55	B. 57	C. 59	D. 61	E. 63	
8.	Each letter A·M·A·T·Y·C	$C = 3^2 \cdot 5^2 \cdot 7 \cdot 11^2$,	Z of the alph find M + T -	abet is assi + Y + C.	gned a unique	integer from 2 to 27. If
	A. 30	B. 34	C. 36	D. 38	E. 42	
9.	The third-or $P(0) \cdot P(3) =$	third-degree polynomial P(x) has only nonnegative integer coefficients. If $P(3) = 139$ and $P(1) \cdot P(2) = 689$, find P(-1).				
	A2	B1	C. 0	D. 1	E. 2	
10.	Find the st radians or correspond	mallest posit in degrees. V ling blank or	ive value of Write your a 1 the answe	t such that nswer (rour r sheet.	cos t is the sa ided to 3 decim	me whether t is in al places) in the
11.	In quadrila bisector of	teral ABCD, ∠A meets di	AB = 6, BC agonal BD a	= 6, CD = 8, t point E, fi	, AD = 10, and <i>.</i> nd BE.	$\angle C = 90^{\circ}$. If the angle

A. $\frac{15}{4}$ B. 4 C. 5 D. 6 E. $\frac{25}{4}$

AMATYC Student Mathematics League

- 12. Line L has intercepts 2 and 4, while line M has intercepts 4 and 6. If L and M intersect at (a, b), which of the following could NOT be 3a + b?
 - A. 0 B. 4 C. 8 D. 12 E. 32
- 13. Sue traveled continuously starting on 1/1/2012. Her first trip was less than 3 months, and each successive trip was 2 days longer than the previous trip. If her last trip ended on 12/31/2012, which of these was the length in days of one of her trips? A. 54 B. 58 C. 65 D. 72 E. 77
- 14. A binary string is a sequence of 1's and 0's, such as 10011 or 11101010. How many different binary strings of length 6 are there such that no two are reversals of each other or add up to 111111?
 - A. 22 B. 23 C. 24 D. 25 E. 26
- 15. In quadrilateral PQRS, $\angle P = \angle Q = \angle S = 45^\circ$, $\angle QPR = \angle RPS$, and $PR = 8\sqrt{2}$. Find the area of quadrilateral PQRS to the nearest integer.

A. 60 B. 61 C. 62 D. 63 E. 64

- 16. The numbers 2 and 1 are the smallest positive integers for which the square of the first is 2 more than twice the square of the second. If a and b are the smallest such pair with a > 10, find a b.
 - A. 13 B. 15 C. 17 D. 19 E. 21
- 17. A number is chosen at random from among all 5-digit numbers containing exactly one each of the digits 1, 2, 3, 4, and 5. Find the probability that no two adjacent digits in the number are consecutive integers.

A. $\frac{1}{10}$ B. $\frac{7}{60}$ C. $\frac{2}{15}$ D. $\frac{3}{20}$ E. $\frac{1}{6}$

- 18. The triangular region with vertices (0, 0), (4, 0), and (0, 3) is rotated 90° counterclockwise around the origin. Find the area of the figure formed by this rotation to the nearest hundredth.
 - A. 19.96 B. 20.04 C. 20.12 D. 20.20 E. 20.28
- 19. For how many pairs of positive integers (n, m) with n, m < 100 are both of the polynomials $x^2 + mx + n$ and $x^2 + mx n$ factorable over the integers?

A. 4 B. 5 C. 6 D. 7 E. 8

20. Triangles ACD and BCD (AD = 14, BD = 40) are inscribed in a semicircle with diameter CD = 50. If AB > 25, find the area of their union.

A. 625 B. 637.5 C. 652.5 D. 673.5 E. 675

Test $#2$	AMATYC Student Mathematics League	February/March 2013
1. D		
2. D		
3. E		
4. C		
5. B		
6. B		
7. B		
8. A		
9. B		
10. 6.175		
11. A		
12. C		
13. B		
14. Correct	t for all students	
15. E		
16. C		
17. B		
18. B		
19. D		
20. D		