1. A total of 50 problems, minus 12 problems in common, makes 38 distinct problems in all. (Answer: D)
2. The third side of a triangle must be longer than the difference of the other two sides and shorter than their sum. Therefore if c is the length of the third side: $8.1-1.4<c<8.1+1.4 \Longrightarrow 6.7<c<9.5$. Of the choices provided, 8 is the only number that falls into this range. (Answer: D)
3. The first equation minus the second is $(3 e) x+(3 e) y=3 e \Longrightarrow x+y=1 \Longrightarrow x=1-y$. Substitute for x in the first equation to get $y=2 \Longrightarrow x=-1 \Longrightarrow b-a=y-x=3$. (Answer: E)
4. Just factor the numbers given: $2014=2 \cdot 19 \cdot 53 \Longrightarrow\{1,18,52\}, 2015=5 \cdot 13 \cdot 31 \Longrightarrow\{4,12,30\}$, and $2016=2^{5} \cdot 3^{2} \cdot 7 \Longrightarrow\{1,2,6\}$, which has the desired property. (Answer: C)
5. The lines intersect at some point $(x, 0)$. Set $y=0$ in each equation to find $x=-b / 2$ and $x=6 / m$, respectively. These ae the same point, so $-b / 2=6 / m \Longrightarrow m b=-12$. (Answer: B)
6. Play around a bit, starting with $n=3$, and hopefully find $\frac{1}{4}=\frac{1}{20}+\frac{1}{5}=\frac{1}{12}+\frac{1}{6}=\frac{1}{8}+\frac{1}{8}$. In general, if $\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a b}=\frac{1}{n}=\frac{k}{k n}$ with k as small as possible, then $\frac{1}{a}+\frac{1}{b}=\frac{1}{k n}+\frac{k-1}{k n}$, so $k-1$ is a factor of n, and the pairs (a, b) with $a \geq b>0$ and $\frac{1}{a}+\frac{1}{b}=\frac{1}{n}$ are of the form $(a, b)=(k n, k n /(k-1))$, where $k-1$ is a factor of $n: k=2$ is the smallest possible, corresponding to $\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}$, and $k=n+1$ is the largest possible, corresponding to $\frac{1}{n(n+1)}+\frac{1}{n+1}=\frac{1}{n}$. Therefore, the number of solutions is the number of factors of n, and the smallest n with 3 factors is $n=4$. (Answer: B)
7. The possibilities for b are fewest, so with a calculator, store the values $5,10, \ldots$ for B, and use the TABLE feature with formula $Y=\sqrt{2013-B^{2}-X^{3}}$ to find integer pairs $(a, c)=(Y, X)$. The solution $(a, b, c)=(4,10,43)$ is quickly found this way, so $a+b+c=57$. (Answer: B)
8. $A=11$, since otherwise two different letters are both 11 or some letter is $\geq 33>27$. From $M T Y C=3 \cdot 3 \cdot 5 \cdot 5 \cdot 7$, similar considerations demand that some letter is $3 \cdot 5=15$ and the others are 3,5 , and 7 , so $M+T+Y+C=3+5+7+15=30$. (Answer: A)
9. As sets of values, $\{P(0), P(3)\}=\{1,139\}$ and $\{P(1), P(2)\}=\{1,689\}$ or $\{13,53\}$. The coefficients of P are non-negative, so P is increasing on $[0, \infty)$, and the values must be $P(0)=1, P(1)=13, P(2)=$ $53, P(3)=139$. One way to continue is to set $P(x)=a x^{3}+b x^{2}+c x+d$, use the above values to write the equations $P(0)=d=1, P(1)=a+b+c+d=13, P(2)=8 a+4 b+2 c+d=53$, and $P(3)=27 a+9 b+3 c+d=139$, and solve these to find $(a, b, c, d)=(3,5,4,1) \Longrightarrow P(-1)=$ $-a+b-c+d=-3+5-4+1=-1$. Alternatively, if you know that the $k^{t h}$ differences of a $k^{t h}$-degree polynomial are constant, you can use this fact to quickly find the same result. (Answer: B)
10. Let $\cos _{R A D}(x)$ be the cosine function which takes a radian argument, and let $\cos _{D E G}(x)$ be the cosine function which takes a degree argument. The relation between these is $\cos _{D E G}(x)=\cos _{R A D}(\pi x / 180)$, so the problem is to find the smallest positive solution to $\cos _{R A D}(x)=\cos _{D E G}(x) \Longleftrightarrow \cos _{R A D}(x)=$ $\cos _{R A D}(\pi x / 180)$. With a graphing calculator (in radian mode), it is easy to find that the first positive intersection of the curves $Y_{1}=\cos (X)$ and $Y_{2}=\cos (\pi X / 180)$ occurs at approximately (6.1754042, 0.99419723). (Answer: 6.175)
11. By the Pythagorean theorem, $B D=10$, so $\triangle A B D$ is isoceles with base $A B=6$ and sides $B D=$ $D A=10$. Let $2 \alpha=\angle A$; by the law of sines, $\frac{B E}{\sin \alpha}=\frac{6}{\sin (\pi-3 \alpha)}=\frac{6}{\sin 3 \alpha}$ and $\frac{10-B E}{\sin \alpha}=\frac{10}{\sin 3 \alpha}$. It follows that $\frac{\sin \alpha}{\sin 3 \alpha}=\frac{B E}{6}=\frac{10-B E}{10} \Longrightarrow 10 B E=60-6 B E \Longrightarrow B E=\frac{15}{4}$ (Answer: A)
12. There are two possibilites each for L and M, so 4 possible points of intersection: $(a, b)=(0,4),(4,0)$, $(-4,12)$ or $(12,-4) \Longrightarrow 3 a+b=4,12,0$, or 32 , so only 8 is not possible. (Answer: C)
13. If $n=$ length of the first trip and $k=$ number of trips, then $n+(n+2)+(n+4)+\cdots+(n+2(k-1))=$ $366 \Longrightarrow k n+2(1+2+\cdots+(k-1))=k(n+k-1)=366=2 \cdot 3 \cdot 61 . k$ must be a factor of 366 , so the positive integer solutions are $(k, n)=(1,366),(2,182),(3,120)$, and $(6,56)$; since $n \leq 90$, only the last of these works, and the trips were of lengths $56,58,60,62,64$, and 66 . (Answer: B)
14. Most likely, the problem should have been: "For a 6 -digit bit string s, let $R(s)$ be the reverse of s and let $O(s)=111111-s$ be the opposite of s; e.g., $R(110101)=101011$ and $O(110101)=001010$. Find the largest possible size of a set S of 6 -digit bit strings, such that $s \in S \Longrightarrow R(s), O(s) \notin S$." Each of the $2^{6}=64$ strings is either a palindrome, with $R(s)=s$; a palopposite, with $R(s)=O(s)$; or neither. There are $2^{3}=8$ palindromes, and none may be in S. There are $2^{3}=8$ palopposites which form pairs such as $\{011001,100110\}$, and at most one from each of these 4 pairs may be in S. The remaining 48 strings fall into 12 quartets of the form $\{s, R(s), O(s), R(O(s))=O(R(s))\}$; at most 2 from this quartet may be in S, either $\{s, O(R(s))\}$ or $\{R(s), O(s)\}$. Thus, S contains at most $4+2(12)=28$ strings. S is not unique - there are 2^{16} such sets! Writing strings as decimal numbers, one example is $S=\{7,11,21,25,1,31,2,47,3,15,4,55,5,23,6,39,9,27,10,43,13,19,14,35,17,29,22,37\}$. So the correct answer to the likely problem is 28 , which was not an option. (Answer: Correct for all students)
15. The non-intersecting "diagonals" $P R$ and $Q S$ lie on perpendicular lines (which intersect at T), so the area is $\frac{1}{2}|P R||Q S| . \triangle Q T S \cong \triangle P T R$, so $|Q S|=|P R|=8 \sqrt{2}$, so the area is exactly 64. (Answer: E)
16. In other words, find the smallest pair (a, b) with $a^{2}=2 b^{2}+2$ and $a>10$. Use the TABLE function on a calculator with $Y=\sqrt{2 X^{2}+2}$ to quickly find the pair $(a, b)=(58,41)$, so $a-b=17$. (Answer: C)
17. Just write out the possibilities to find 2 such numbers that begin with $1(13524,14253), 3$ that begin with $2(24135,24153,25314)$, and 4 that begin with $3(31425,31524,35241,35142)$; by symmetry, there are 3 that begin with 4 and 2 that begin with 5 , so 14 such numbers with no consecutive digits. There are $5!5$-digit numbers with distinct digits, so the probability is $14 / 5!=7 / 60$. (Answer: B)
18. The region is the union of a quarter-circle C_{4} of radius 4 in the first quadrant, a quarter-circle C_{3} of radius 3 in the second quadrant, and the triangle T with vertices $O(0,0), P(-3,0), Q(0,4)$. Estimate the area inside T but outside C_{3} by a right triangle with height 1 and base $3 / 4$, to find $A>\frac{\pi}{4}\left(3^{2}+4^{2}\right)+\frac{1}{2}(1)\left(\frac{3}{4}\right) \approx 20.009954$; the neglected area is contained in the right triangle with vertices $(0,3),(0, \sqrt{8})$, and $(-1, \sqrt{8})$, which has area $(3-\sqrt{8}) / 2 \approx 0.0858$, so $20.009<A<20.096$, so only B works. Alternatively, solve $y=\frac{4}{3} x+4$ and $x^{2}+y^{2}=9$ to find that T and C_{3} intersect at $R(-21 / 25,72 / 25)$. The area of $\triangle O Q R$ is $42 / 25$ and the area of the remaining sector of C_{3} is $\frac{1}{2} 3^{2} \arctan (72 / 21)$, so the exact area is $4 \pi+4.5 \arctan (24 / 7)+42 / 25 \approx 20.03788 \approx 20.04$. (Answer: B)
19. By the quadratic formula, these polynomials factor iff $m^{2}-4 n$ and $m^{2}+4 n$ are perfect squares. If your calculator can deal with two-variable tables, look for integer values of $\sqrt{m^{2}-4 n}+\sqrt{m^{2}+4 n}$, $1 \leq m, n \leq 99$. Otherwise, suppose $m^{2}-4 n=(m-k)^{2}$ and $m^{2}+4 n=(m+j)^{2}$ for some integers $j, k>0$; it follows that $2 m j+j^{2}=4 n=2 m k-k^{2} \Longrightarrow 2 m(k-j)=j^{2}+k^{2} \Longrightarrow j, k$ are both odd or both even \Longrightarrow both sides are divisible by $4 \Longrightarrow j=2 p$ and $k=2 q$ for some $p, q \geq 1 \Longrightarrow m(q-p)=$ $p^{2}+q^{2} \Longrightarrow q=p+d$ for some $d \geq 1 \Longrightarrow m=\frac{2 p^{2}}{d}+2 p+d$ and $n=\left(2 m j+j^{2}\right) / 4=p(m+p)$. Plug in values of p and d for which $d \mid 2 p^{2}$ and record those pairs with $m, n<100$; since $m>2 p \Longrightarrow n>3 p^{2}$, it is only necessary to check through $p=5$ and, writing (m, n) instead of (n, m) as on the test, find the 7 pairs $(m, n)=(5,6),(13,30),(10,24),(25,84),(17,60),(15,54)$, and $(20,96)$. (Answer: D)
20. The triangles have right angles at A and B, so $B C=\sqrt{50^{2}-40^{2}}=30$, area $(\triangle B C D)=\frac{1}{2}(30)(40)=$ $600, A C=\sqrt{50^{2}-14^{2}}=48$, and $\operatorname{area}(\triangle A C D)=\frac{1}{2}(14)(48)=336$. In coordinates with C at the origin, D at $(50,0)$, and A to the right of $B, C B$ is on the line $y=7 x / 24$ and $B D$ is on the line $y=3(50-x) / 4$, so the lines intersect at $E=(36,21 / 2)$. Therefore, area $(\triangle A C D \cup \triangle B C D)=$ $\operatorname{area}(\triangle A C D)+\operatorname{area}(\triangle B C D)-\operatorname{area}(\triangle E C D)=600+336-\frac{1}{2}(50)(21 / 2)=673.5$. (Answer: D)
