1. If P is the price of the item with tax, $1.08 P$ would be the price paid after tax. The discount is $1-P /(1.08 P)=1-1 / 1.08 \approx 7.4 \%$ (Answer: A)
2. Rewrite each line in slope intercept form to find the slope of the first line is $m_{1}=-\frac{a}{2}$ and the second is $m_{2}=\frac{b}{3}$. If two lines are perpendicular, the product of their slopes is equal to $-1 \Longrightarrow$ $-\frac{a}{2} \cdot \frac{b}{3}=-1 \Longrightarrow a b=6$ (Answer: E)
3. Sue's loan decreases by $\$ 200-\$ 10=\$ 190$ each month. $12000 / 190 \approx 63.2$. So after 63 months, she has paid her loan down to $12000-63 \times 190=30$. In the 64 th month, she pays $\$ 30$ plus the $\$ 10$ in interest and the loan is paid off. (Answer: E)
4. $3 x^{2}+4 x y-4 y^{2}=(3 x-2 y)(x+2 y) . \quad 3 x-2 y+x+2 y=4 x$ (Answer: A)
5. Solve the system to get the solution $\{(-3,4)\} . a+b=1$ (Answer: D)
6. The rectangle with the greatest perimeter is formed by placing all 8 dominos end-to-end resulting in a perimeter of 34 . The rectangle with the smallest perimeter is a 4 by 4 square, with a perimeter of $16.34 / 16=2.125$ (Answer: D)

7. The number must have 5 and 9 as a factor. Therefore the last digit must be either a 0 or a 5 and the sum of the digits must be divisible by $9 .(8,0)$ and $(3,5)$ both work and both have a sum of 8 . (Answer: A)
8. $A_{E d}+A_{E m}=28$ and $\frac{1}{2} A_{E d}=\frac{2}{3} A_{E m}$. Solve the system for just one of the variables and you have the solution. $A_{E d}=16$ and $A_{E m}=12$. Both have 8 oz left. (Answer: C)
9. $2^{60}-1$ is too big to test in a calculator but $2^{60}-1=\left(2^{30}-1\right)\left(2^{30}+1\right)$ and these two numbers are only 10 digits. Using a calculator you can determine $2^{30}-1$, is divisible by 3,7 , and 13 and $2^{30}+1$ is divisible by 5 and 11. 17 is the only number in the set that is not a factor. (Answer: D)
10. Let x be the number of $49 ¢$ stamps and y be the number of $3 ¢$ stamps. $0.49 x+0.03 y=4.10$. With $x>y$, there aren't very many combinations. Try the maximum value for x, which is 8 and it works! $x=8$ and $y=6$ (Answer: B)
11. Evaluating $\sqrt[4]{2014}$ on your calculator will quickly give you the maximum possible value for a, which is 6. Using the TABLE function, quickly scan for integer values of $Y=\sqrt{2014-6^{4}-X^{2}}$. You'll notice, no such values exist for $a=6,5,4$, but for $a=3$ we get $13=\sqrt{2014-3^{4}-42^{2}}$ or $3^{4}+13^{2}+42^{2}=2014$ (Answer: B)
12. This can be done using trial and error. Die $1=\{B, A, C, D, I, N\}$, Die $2=\{O, P, H, R, X, G\}$, and Die $3=\{\mathrm{W}, \mathrm{Y}, \mathrm{T}, \mathrm{L}, \mathrm{E}, \mathrm{S}\}$. The only word that can be spelled is "won." (Answer: E)
13. With a graphing calculator, enter $Y_{1}=X /(63-X)$ and use the table to see if any values round to 0.455. None do, so try $Y_{1}=X /(64-X)$ and it works! The numbers are 20 and 40. (Answer: B)
14. Solve for x in both to get $\frac{15-b}{a}=\frac{b-a}{15}$. Now solve for b to get $b=\frac{a^{2}+225}{a+15}$. Use the table on a graphing calculator to find integer values. All possible solutions are for (a, b) are: $\{(0,15),(3,13),(10,13),(15,15),(30,25)\}$. (Answer: C)
15. Add the first equation to -3 times the second equation and to 3 times the third equation to get: $6 r+25 s+28 t+48 u+64 v=37$. (Answer: E)
16. The two triangles are similar and the ratio of their areas is $\frac{75}{48}$ or $\frac{25}{16}$. The ratio of the bases and heights of similar triangles is equal to the square root of the ratio of their areas. If b_{1} and h_{1} are the base and height of $\triangle \mathrm{ABE}$, then $\frac{5}{4} b_{1}$ and $\frac{5}{4} h_{1}$ are the base and height of \triangle CDE. $A_{\text {trap }}$ ABCD $=$ $\frac{1}{2}\left(b_{1}+\frac{5}{4} b_{1}\right)\left(h_{1}+\frac{5}{4} h_{1}\right)=\frac{81}{16}\left(\frac{1}{2} b_{1} h_{1}\right) . A_{\triangle \mathrm{ABE}}=\frac{1}{2} b_{1} h_{1} \Longrightarrow$ $A_{\text {trap ABCD }}=\frac{81}{16}(48)=243$. (Answer: D)

17. We know $7^{3} p+7^{2} q+7 r+s=9^{3} q+9^{2} r+9 s+p \Longrightarrow 680 q+74 r+8 s-342 p=0$. Now we need to find restrictions on the variables to make guess-and-check easier. First, p and q cannot equal zero because the numbers are 4 digits. No digit can be more than 6 because one of the numbers is in base 7. We know q cannot be bigger than 3 because $9^{3} \cdot 4=2187$ requires five digits in base 7 . Suppose $q=3, p$ would have to equal 6 since if $p=5$ it would not be big enough to bring the equation back to zero. But no combination of r and s work with $p=3$ and $q=6$. Similarly, if $p=2$ we only need to try 4,5 , or 6 for q. The solution is $(q, r, s, p)=(2,0,1,4)$. Which is what we should have tried in the first place since they always try to work the year into these exams! (Answer: 1471)
18. Think of this as distributing 5 chips in 7 bowls. 6 bowls represent the 6 candidates and the 7 th represents a vote for no one. If you visualize any given scenario as 5 chips and 6 dividers that separate the chips, the problem is reduced to the number of ways to rearrange 11 things, where 5 are identical and 6 are identical: $\frac{11!}{5!\cdot 6!}=462$ (Answer: C)
19. Counting multiplicity, we know P has 4 roots. If there are only two distinct roots, P can be written $P(x)=(x-a)^{2}(x-b)^{2}$ or $P(x)=(x-a)^{3}(x-b)$. Expanding the first one gives: $P(x)=$ $x^{4}-2(a+b) x^{3}+\left(a^{2}+b^{2}+4 a b\right) x^{2}-2 a b(a+b) x+a^{2} b^{2}$. Solve the system $a^{2} b^{2}=144,-2 a b(a+b)=-24$ and you get the roots -4 and 3 . So $P(x)=x^{4}+2 x^{3}-23 x^{2}-24 x+144$. (Answer: D)
20. Start by listing all possible odd-neighbored sets:

n	Sets	Number
	\varnothing	1
1	$\varnothing,\{1\}$	
2	$\varnothing,\{1\},\{1,2\}$	2
3	$\varnothing,\{1\},\{3\},\{1,3\},\{1,2,3\}$	3
4	$\varnothing,\{1\},\{3\},\{1,3\},\{3,4\},\{1,2,3\},\{1,3,4\},\{1,2,3,4\}$	5
5	$\varnothing,\{1\},\{3\},\{5\},\{1,3\},\{1,5\},\{3,5\},\{1,2,3\},\{1,3,5\},\{3,4,5\},\{1,2,3,5\}$,	8
	$\{1,3,4,5\},\{1,2,3,4,5\}$	13

The Fibonacci sequence! When $n=12$ the total number of sets would be 377 , one of which is empty. (Answer: D)

