Test #2		AMATYC S	tudent N	lathematic	s Leag	gue		Februa	ry/March 2015
1.	The price of a me 10% and the serv worth \$1.20, wha (which does not i to the nearest 50	eal in a resta vice charge o at should the nclude tax o \$?	urant in or tip of t e price o or tip, bo	France is 18% is inc f the same th of whic	a 24€ (e eluded e meal ch are o	euros). in the be in t calcula	In E price. the U: ted o	Curope, If the nited S n the b	the tax of e euro is states base price),
A.	\$21.50 B.	\$22.50	C. \$	23.50	D.	\$24.50)	E.	\$25.50
2.	An arithmetic pro difference greater	ogression of [.] than 1. Wł	positive nat is the	integers v e maximu	with a_1 m num	= 2 an iber of	d a_n = terms	= 47 ha s it cou	as common 11d have?
A. 10	D B. 15	C. 16	D. 17	E. 2	20				
3.	The lines with eq Find a + b.	uations 3x + A. 2	y = a a B. 6	nd x - 2y C.	= b int 10	ersect D.	at the 12	e point E.	(2, -4). 14
4.	Al and Ed are each taking 5 sections at the local community college. They have four sections in common. If the average size of Al's sections is 20, and the average size of all 6 sections is 24, how big is the section Ed is taking without Al?								
A. 4	40 B. 42	C. 44	D	48 E	. 50				
5.	The sequence a_1 , a_2 , a_3 , a_4 consists solely of single-digit positive integers. If $a_2 = 2a_1 - 1$, $a_2 = a_2/3$, and $a_4 = 12 - 2a_2$, find a_4 .								
A.	3 B. 4	C. 5	D. 6	ь Е.	7				
б.	Knights always tell the truth and knaves always lie. A knight sits in a circle with 8 other people, each either a knight or knave. Each of the 9 people says, "I'm sitting next to exactly one knave." Find the maximum possible number of knaves.								
A. 1	B. 2 C	2.3 D.	4 E	2. 5					
7.	In the equation $A \div MA = .TYC$, different letters are replaced by different digits 1 to 9, and identical letters are replaced by identical digits 1 to 9. Find A + T.								
A. 5 B. 6 C. 7 D. 8 E. 9									
8. If $(x-1)^2$ is a factor of $P(x) = 2x^5 - 4x^4 + x^3 + ax^2 + bx + c$, find $a - c$.									
A.	2 B.	4 C.	. 6	D D	•	8	E.		10
9.	The graph of xy -	6x + 4y = 36	5 is sym	metric witl	h respe	ect to (p	o, q).	Find p	oʻq.
A:	36 B24	C.	12	D.	24		E.	36	
10.	In the sequence geometric progress Find a_4 .	$a_1, a_2, \mathbf{L}, a_7$ of ssion, a_3, a_4, a_7	\hat{a}_5 positive a_5 form a	e integers, an arithm	a_1, a_2, a_3 etic pro	and ogressi	a_5, a_6, \dots on, a	a_7 each $_1$ =5, ar	form a and $a_7 = 228$.
A. 51	B. 53	C. 55	D. 57	E. 59)				
11.	The equation a^3 which $a > b$. Find	$b^{3} + c^{2} = 20$ d a + b + c fo	015 has or this so	exactly or olution.	ne solu	tion in	posit	tive int	egers for

В. Α. 38 39 C. 40 D. 41 E. 42 February/March 2015

AMATYC Student Mathematics League

- 12. For a nonconstant function f, f(x) = kf(1 x) for all real numbers x and some constant k > 0. Find k. A. -2 B. -1 C. 0 D. 1 E. 2
- 13. How many integers from 1000 to 2015 when tripled have no even digits?
- A. 80 B. 81 C. 82 D. 83 E. 84

14. An antibiotic is applied to a bacterial colony at 1 pm, 2 pm, 3 pm, etc, killing 256 bacteria each time. Between applications, the colony doubles in size. If the 6 pm application kills the last 256 bacteria, write the number of bacteria present when the 1 pm application is made in the corresponding blank on the answer sheet.

- 15. The graphs of the equations $2\sqrt{y} x + 1 = 0$ and x + y = 25 intersect at one or more points (a_i, b_i) . Find the sum of $b_i a_i$ for all such points.
- A. 7 B. 11 C. 47 D. 54 E. 58
- 16. Cao plans a trip from Seattle to San Francisco to Los Angeles to Las Vegas and return. Between Seattle and SF and SF and LA he can go by car, bus, plane, or train, but between LA and LV he can go only by car, bus, or plane. In how many ways can he select his mode of travel so that at least one of the return legs uses the same mode of travel as the corresponding outbound leg?
- A. 720 B. 864 C. 1440 D. 2256 E. 2304
- 17. The sum of the first n positive integers equals both the sum of the 5 consecutive positive integers starting at a and the sum of the 8 consecutive positive integers starting at b. Find a b for the least such a and b.
- A. 16 B. 21 C. 24 D. 60 E. 63
- 18. Given a fraction a/b in simplest form, you are allowed to replace it with a/b + 1 or with -b/a. Find the least number of replacements needed to change 7/9 into 0.
- A. 9 B. 10 C. 11 D. 12 E. 13
- 19. A quadrilateral has consecutive sides of length 10, 4, and 6 (in that order), and one diagonal divides the quadrilateral into two isosceles triangles. If A1 and A2 are the smallest and next smallest areas of quadrilaterals which satisfy these conditions, in which interval below does A2 A1 lie?
- A. [0, 1] B. [3, 4] C. [7, 8] D. [8, 9] E. [12, 13]
- 20. One number is removed from the set S = {8, 12, 22, 24, 29}. Each remaining number is multiplied by either 1/2, 1, or 2 to produce a set T. If the sum of the elements of T equals the sum of the elements of S, which number was removed?
- A. 8 B. 12 C. 22 D. 24 E. 29

Test $#2$	AMATYC Student Mathematics League	February/March 2015
1. B		
2. C		
3. D		
4. C		
5. D		
6. C		
7. E		
8. A		
9. B		
10. A		
11. B		
12. D		
13. D		
14. 504		
15. A		
16. C		
17. C		
18. E		
19. A		
20. D		