1. Find all real solutions.
(a) $4 x+3=4 x^{2}$
(b) $\sqrt{2 x-3}+x=3$
(c) $|4 x+1|=13$
2. Write in $a+b i$ format:
(a) $\frac{2-3 i}{2+5 i}$
(b) $(3-4 i)^{2}$
(c) i^{99}
3. Find all complex solutions (including real):

$$
x^{4}-256=0
$$

4. Solve the inequality.
(a) $-x^{2}-4 x+12>0$
(b) $|x-5| \leq 3$
5. Consider the points $(-6,2)$ and $(4,-14)$.
(a) Find the distance between them.
(b) Find the midpoint.
6. Find the center and radius of the circle:

$$
x^{2}+y^{2}+2 x-6 y+9=0
$$

7. Test the equation for symmetry.
(a) $y=\sqrt{1-x^{2}}$
(b) $y=\frac{x}{4-x^{2}}$
(c) $|y|+x=0$
8. Find the equation of the line parallel to $7 x-2 y=8$ and passing through the point $(-4,3)$.
9. Suppose that M varies directly as z, and $M=120$ when $z=15$. Find z when $M=150$.
10. Find the domain of the function.
(a) $f(x)=\sqrt{x-4}$
(b) $g(x)=\frac{x^{2}}{x^{3}-8}$
11. Sketch the graph of the function and state the domain and range.

$$
g(x)= \begin{cases}-\frac{1}{2} x+2 & x<-2 \\ x^{2}-2 & x \geq-2\end{cases}
$$

12. The graph of f shown below, passes though the points $(-2,0),(0,2)$, and $(2,0)$. Sketch the graph of $g(x)=-\frac{1}{2} f(x-1)$.

13. A right triangle has one vertex on the graph of $y=9-x^{2}, x>0$, at (x, y), another at the origin, and the third on the positive x-axis at $(x, 0)$. Express the area A of the triangle as a function of x.
14. Find the average rate of change of the function between the given x values.

$$
f(x)=\frac{1}{x^{2}+1} \quad x=-1, x=2
$$

15. Use your graphing calculator to determine the intervals on which the graph of the function is increasing and decreasing.

$$
h(x)=x^{3}+\frac{5}{2} x^{2}-2 x+3
$$

16. Suppose the graph of f passes through the point $(-2,3)$.
(a) If f is an odd function, what other point must it pass through?
(b) If f is an even function, what other point must it pass through?
17. Write the following quadratic function in standard form and find the minimum or maximum value.

$$
f(x)=-3 x^{2}+6 x-5
$$

18. Write a polynomial function whose graph is shown below (use the smallest degree possible).

19. Divide $4 x^{3}-7 x+5$ by $2 x-1$.
20. Consider $f(x)=\frac{x^{2}-2 x-3}{x^{2}-1}$
(a) List all x - and y-intercepts
(b) State the domain of f
(c) Where is the vertical asymptote(s)?
(d) Are there any holes? If so, give the coordinates.
(e) What is the horizontal or oblique asymptote?
(f) Sketch the graph of $y=f(x)$.
21. Consider $f(x)=\frac{x^{2}-1}{x-2}$
(a) List all x - and y-intercepts
(b) State the domain of f
(c) Where is the vertical asymptote(s)?
(d) Are there any holes? If so, give the coordinates.
(e) What is the horizontal or oblique asymptote?
(f) Sketch the graph of $y=f(x)$.
22. Solve the inequalities.
(a) $x^{2}(x-2)(x+4)<0$
(b) $\frac{1}{x+3}+\frac{1}{x-2} \geq 0$
23. Find all complex zeros of $h(x)$.

$$
h(x)=x^{3}-7 x^{2}+12 x-10
$$

24. Consider the function:

$$
f(x)=2 x^{3}-5 x^{2}-9 x+18
$$

(a) List all possible zeros.
(b) Use Descartes' Law of Signs to find the possible number of positive and negative zeros.
(c) Factor f completely.
(d) Find all of the zeros.
25. Find a 4 th degree polynomial with zeros $-2 i$ and 1 , with 1 having multiplicity 2.

Answers

1. (a) $-\frac{1}{2}, \frac{3}{2} ;$ (b) $2 ;$ (c) $-\frac{7}{2}, 3$
2. (a) $-\frac{11}{29}-\frac{16}{29} i$; (b) $-7-24 i$; (c) $-i$
3. $\pm 4, \pm 4 i$
4. (a) $(-6,2) ;(b)[2,8]$
5. (a) $2 \sqrt{89}$; (b) $(-1,-6)$
6. center: $(-1,3), r=1$
7. (a) y-axis; (b) origin; (c) x-axis
8. $y=\frac{7}{2} x+17$
9. $\frac{75}{4}$
10. (a) $[4, \infty)$; (b) $(-\infty, 2) \cup(2, \infty)$
11.

domain: $(-\infty, \infty)$; range: $[-2, \infty)$
12.

13. $A(x)=\frac{1}{2}\left(9 x-x^{3}\right)$
14. $-\frac{1}{10}$
15. increasing on $(-\infty,-2) \cup\left(\frac{1}{3}, \infty\right)$, decreasing on $\left(-2, \frac{1}{3}\right)$
16. (a) $(2,-3)$; (b) $(2,3)$
17. $f(x)=-3(x-1)^{2}-2$, vertex: $(1,-2)$, maximum: -2
18. $g(x)=-(x-4)(x+2)^{2}(x-2)$
19. $2 x^{2}+x-3+\frac{2}{2 x-1}$
20. (a) x-int: $(3,0), y$-int: $(0,3)$; (b) $\{x \mid x \neq$ $-1, x \neq 1\}$; (c) $x=1$; (d) $(-1,2)$; (e) HA: $y=1$;

21. (a) x-int: $(-1,0)$ and $(1,0), y$-int: $\left(0, \frac{1}{2}\right) ;(\mathrm{b})$ $\{x \mid x \neq 2\}$; (c) $x=2$; (d) no holes; (e) OA: $y=x+2$;

22. (a) $(-4,0) \cup(0,2)$
(b) $\left(-3,-\frac{1}{2}\right] \cup(2, \infty)$
23. $\{5,1 \pm i\}$
24. (a) $\pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2, \pm 3, \pm \frac{9}{2}, \pm 6, \pm 9, \pm 18$
(b) two or zero positive, one negative
(c) $f(x)=(2 x-3)(x+2)(x-3)$
(d) $\left\{-2, \frac{3}{2}, 3\right\}$
25. $f(x)=x^{4}-2 x^{3}+5 x^{2}-8 x+4$

