1. Given the functions $f(x) = 1 - 3x^2$ and $g(x) = \sqrt{4-x}$, find: (a) $(f \circ g)(2)$ (b) $(g \circ f)(-2)$ (c) $(f \circ g)(4)$ (c) $(g \circ g)(-5)$

(c)
$$(f \circ f)(4)$$
 (d) $(g \circ g)(-5)$

- **2.** Given $f(x) = \sqrt{x-3}$ and g(x) = 3x, find $(f \circ g)(x)$ and $(g \circ f)(x)$ and state the domain of each.
- 3. Determine whether each function is one-toone.
 - (a) $\{(2,2), (3,4), (5,9), (-3,12)\}$
 - (b) $f(x) = (x-5)^2$
 - (c) $g(x) = \sqrt{x+3}$
 - (d) h(x) = |x| 7
- 4. Consider the function $f(x) = \frac{2-x}{3+x}$.
 - (a) Graph f and verify that it is one-to-one.
 - (b) Find $f^{-1}(x)$.
 - (c) Determine the domain and range of f and f^{-1} .
- 5. Sketch the graph of $f(x) = 1 + 2^x$ and state the domain and the range.
- **6.** Find the function in the form $f(x) = Ca^x$ that passes through the points (0,3) and (3,192).
- 7. Sketch the graph of $y = \log_2(x+2)$ and state its domain and range.
- 8. Solve.

(a)
$$4^{2x-3} = \frac{1}{16}$$
 (b) $9^{x+2} = 27$

- 9. Evaluate each logarithmic expression without a calculator.
 - (a) $\log_3 81$ (b) $\ln \frac{1}{e^2}$
 - (d) log₉ 27 (c) $\log_{49} 7$
- 10. Rewrite $\log_2 6$ in terms of the natural log and determine the value on your calculator. Round your answer to 3 decimal places.

- 11. Combine into a single logarithmic expression: $2\ln x - \ln(x+1) + \frac{1}{2}\ln y$
- 12. Find the exact solution.

(a)
$$10^{2x-1} = 49$$

(b)
$$\log_3(x+4) + \log_3(x-2) = 3$$

- 13. How much should be invested at 4% interest compounded semiannually to earn \$50,000 in 18 years?
- 14. How long will it take for an investment to double in value if it earns 7% annual interest, compounded continuously? Round your answer to the nearest year.
- 15. The bones of a prehistoric woman found in the desert of New Mexico contained approximately 5% of the original amount of carbon 14. The half-life of carbon 14 is 5600 years.
 - (a) How long ago did the woman die?
 - (b) What percent of carbon 14 was remaining after 2800 years?
- 16. Find the equation of the parabola whose focus is (-3,0) and directrix is x=3.
- 17. Find the focus and the directrix of the parabola given by the equation.

$$y = -\frac{1}{4}x^2 + 2x - 5$$

18. Sketch the graph of each equation.

(a)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

(b) $y^2 - \frac{x^2}{4} = 1$

- **19.** Find an equation of the ellipse centered at the origin and passing through the points (1,2)and (2, 0).
- 20. Find the foci and asymptotes of the hyperbola.

$$4x^2 - 4y^2 - 16x + 8y - 88 = 0$$

Answers

- **1.** (a) -5; (b) $\sqrt{15}$; (c) -6626; (d) 1 **2.** $(f \circ g)(x) = \sqrt{3x - 3}$, D: $[1, \infty)$; $(g \circ f)(x) = 3\sqrt{x - 3}$, D: $[3, \infty)$
- **3.** (a) yes; (b) no; (c) yes; (d) no
- 4. (a) graph passes horizontal line test

(b)
$$f^{-1}(x) = \frac{2-3x}{x+1}$$

- $\begin{array}{ll} \text{(c)} & f \text{: Domain: } (-\infty, -3) \cup (-3, \infty) \text{, Range:} \\ & (-\infty, -1) \cup (-1, \infty) \\ & f^{-1} \text{: Domain: } (-\infty, -1) \cup (-1, \infty) \text{,} \\ & \text{Range: } (-\infty, -3) \cup (-3, \infty) \end{array}$
- **5.** domain: $(-\infty, \infty)$, range: $(1, \infty)$

7. domain: $(-2, \infty)$, range: $(-\infty, \infty)$

9. (a) 4; (b) -2; (c) $\frac{1}{2}$; (d) $\frac{3}{2}$

- **11.** $\ln\left(\frac{x^2\sqrt{y}}{x+1}\right)$ **12.** (a) $\frac{1}{2} + \log 7$; (b) 5 **13.** \$24,511.16 **14.** about 10 years
- **15.** (a) about 24,203 years ago; (b) about 71%

16.
$$y^2 = -12x$$

- **17.** focus: (4, -2), directrix: y = 0
- **18.** (a)

19. $\frac{x^2}{4} + \frac{3y^2}{16} = 1$

20. foci: $(2\pm 5\sqrt{2}, 1)$, asymptotes: $y = \pm (x-2)+1$