1. (1.1) What is the measure of the angle between the hands of a clock when it reads $3: 40$?
2. (1.1) In $\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=10$ and $\mathrm{BC}=5 \sqrt{2}$. Find AC.
3. (1.2) Find the distance between the points $(-1,4)$ and $(-5,6)$.
4. (1.2) Find one positive and one negative angle that is coterminal with 173° (answers may vary).
5. (1.3) Consider the angle $\theta=120^{\circ}$
(a) Draw θ in the standard position on the coordinate axes.
(b) Find a point on the terminal side (answers may vary).
(c) Find $\sin \theta, \cos \theta$ and $\tan \theta$.
6. (1.3) Find $\tan \phi$ if $\sin \phi=\frac{2}{\sqrt{5}}$ and ϕ terminates in QII.
7. (1.3) Find $\cos \theta$ if the terminal side of θ lies on the line $y=-\frac{1}{4} x$ in QII.
8. (1.4) From memory, state all three Pythagorean identities.
9. (1.5) Simplify the expression $\sqrt{16-x^{2}}$ as much as possible after substituting $4 \sin \phi$ for x.
10. (1.5) Show that the following statement is an identity by transforming the left side until it matches the right side. Be organized and do not skip steps.

$$
\frac{\cos ^{2} \theta}{\sin \theta}=\csc \theta-\sin \theta
$$

11. (2.1) Consider a right triangle with one acute angle labeled θ and the appropriate sides labeled "opposite", "adjacent" and "hypotenuse." From memory, list the ratios representing all six trigonometric functions of the angle θ.
12. (2.1) Without the use of a calculator, find the exact value for each of the following:
(a) $\sin 60^{\circ}$
(b) $\tan 30^{\circ}$
(c) $\cos 0^{\circ}$
(d) $\sec 45^{\circ}$
13. (2.2) Subtract: $45^{\circ} 13^{\prime}-22^{\circ} 32^{\prime}$
14. (2.2) Use a calculator to approximate each of the following. Round each answer to the nearest thousandth.
(a) $\sin 12.5^{\circ}$
(b) $\cot 77^{\circ} 29^{\prime}$
(c) $\sec 81^{\circ} 17^{\prime} 50^{\prime \prime}$
15. (2.3) In $\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{C}=90^{\circ}, \mathrm{AC}=55 \mathrm{~m}$ and $\mathrm{m} \angle \mathrm{B}=17^{\circ}$. Find AB rounded to the nearest tenth of a meter.
16. (2.3) In the triangle below, find the measure of angle A to the nearest minute.

17. (2.4) An icicle in the shape of a cone, measures 8 inches down the side and the angle at the tip is 20°. Find the volume of the icicle to the nearest hundredth of a cubic inch. The formula for the volume of a cone is

$$
V=\frac{1}{3} \pi r^{2} h
$$

18. (2.4) Two ships leave a harbor at the same time, one with a bearing of $\mathrm{N} 57^{\circ} \mathrm{W}$ and the other with a bearing of $\mathrm{N} 57^{\circ} \mathrm{E}$, and both travel for 80 miles. What is the distance between the ships?
19. (2.5) A cannonball is fired with an initial velocity of 200 feet per second at an angle of 43° above horizontal. Find the magnitudes of the horizontal and vertical vector components of the velocity vector. Round your answer to one decimal place.

1. 130°
2. $\mathrm{AC}=5 \sqrt{2}$
3. $2 \sqrt{5}$
4. 533° and -187°
5. (b) $(-1, \sqrt{3})$; (c) $\sin \theta=\frac{\sqrt{3}}{2}, \cos \theta=-\frac{1}{2}, \tan \theta=-\sqrt{3}$,
6. $\tan \phi=-2$
7. $-\frac{4 \sqrt{17}}{17}$
8. $\cos ^{2} \theta+\sin ^{2} \theta=1, \sec ^{2} \theta=\tan ^{2} \theta+1, \csc ^{2} \theta=\cot ^{2} \theta+1$
9. $4|\cos \phi|$
10. $\frac{\cos ^{2} \theta}{\sin \theta}=\frac{1-\sin ^{2} \theta}{\sin \theta}=\frac{1}{\sin \theta}-\sin \theta=\csc \theta-\sin \theta$
11. $\sin \theta=\frac{\text { opp }}{\text { hyp }}, \cos \theta=\frac{\text { adj }}{\text { hyp }}, \tan \theta=\frac{\text { opp }}{\text { adj }}, \csc \theta=\frac{\text { hyp }}{\text { opp }}, \sec \theta=\frac{\text { hyp }}{\text { adj }}, \cot \theta=\frac{\text { adj }}{\text { opp }}$,
12. (a) $\frac{\sqrt{3}}{2}$; (b) $\frac{\sqrt{3}}{3}$; (c) 1 ; (d) $\sqrt{2}$
13. $22^{\circ} 41^{\prime}$
14. (a) 0.216 ; (b) 0.222; (c) 6.609
15. $\mathrm{AB} \approx 188.1 \mathrm{~m}$
16. $\mathrm{A} \approx 39^{\circ} 46^{\prime}$
17. about 15.92 in 3
18. about 134.2 miles
19. horizontal is about $146.3 \mathrm{ft} / \mathrm{sec}$, vertical is about $136.4 \mathrm{ft} / \mathrm{sec}$
