Math 142 EXAM 1 REVIEW – CHAPTERS 1–2

- **1.** (1.1) What is the measure of the angle between the hands of a clock when it reads 3:40?
- **2.** (1.1) In  $\triangle ABC$ ,  $m \angle C = 90^\circ$ , AB = 10 and BC =  $5\sqrt{2}$ . Find AC.
- **3.** (1.2) Find the distance between the points (-1, 4) and (-5, 6).
- 4. (1.2) Find one positive and one negative angle that is coterminal with  $173^{\circ}$  (answers may vary).
- 5. (1.3) Consider the angle  $\theta = 120^{\circ}$ 
  - (a) Draw  $\theta$  in the standard position on the coordinate axes.
  - (b) Find a point on the terminal side (answers may vary).
  - (c) Find  $\sin \theta$ ,  $\cos \theta$  and  $\tan \theta$ .
- 6. (1.3) Find  $\tan \phi$  if  $\sin \phi = \frac{2}{\sqrt{5}}$  and  $\phi$  terminates in QII.
- **7.** (1.3) Find  $\cos \theta$  if the terminal side of  $\theta$  lies on the line  $y = -\frac{1}{4}x$  in QII.
- **8.** (1.4) From memory, state allthree Pythagorean identities.
- **9.** (1.5) Simplify the expression  $\sqrt{16 x^2}$  as much as possible after substituting  $4\sin\phi$  for x.
- 10. (1.5) Show that the following statement is an identity by transforming the left side until it matches the right side. Be organized and do not skip steps.

$$\frac{\cos^2\theta}{\sin\theta} = \csc\theta - \sin\theta$$

11. (2.1) Consider a right triangle with one acute angle labeled  $\theta$  and the appropriate sides labeled "opposite", "adjacent" and "hypotenuse." From memory, list the ratios representing all six trigonometric functions of the angle  $\theta$ .

- **12.** (2.1) Without the use of a calculator, find the exact value for each of the following:
  - (a)  $\sin 60^{\circ}$
  - (b) tan 30°
  - (c)  $\cos 0^{\circ}$
  - (d) sec 45°
- **13.** (2.2) Subtract:  $45^{\circ} 13' 22^{\circ} 32'$
- 14. (2.2) Use a calculator to approximate each of the following. Round each answer to the nearest thousandth.
  - (a)  $\sin 12.5^{\circ}$
  - (b) cot 77° 29′
  - (c)  $\sec 81^\circ 17' 50''$
- 15. (2.3) In  $\triangle ABC$ , m $\angle C = 90^\circ$ , AC = 55 m and  $m \angle B = 17^{\circ}$ . Find AB rounded to the nearest tenth of a meter.
- 16. (2.3) In the triangle below, find the measure of angle A to the nearest minute.



**17.** (2.4) An icicle in the shape of a cone, measures 8 inches down the side and the angle at the tip is  $20^{\circ}$ . Find the volume of the icicle to the

nearest hundredth of a cubic inch. The formula for the volume of a cone is  $V = \frac{1}{3}\pi r^2$ 

20°

- 18. (2.4) Two ships leave a harbor at the same time, one with a bearing of N 57° W and the other with a bearing of N 57° E, and both travel for 80 miles. What is the distance between the ships?
- 19. (2.5) A cannonball is fired with an initial velocity of 200 feet per second at an angle of 43° above horizontal. Find the magnitudes of the horizontal and vertical vector components of the velocity vector. Round your answer to one decimal place.

1. 130° 2. AC =  $5\sqrt{2}$ 3.  $2\sqrt{5}$ 4. 533° and  $-187^{\circ}$ 5. (b)  $(-1,\sqrt{3})$ ; (c)  $\sin\theta = \frac{\sqrt{3}}{2}$ ,  $\cos\theta = -\frac{1}{2}$ ,  $\tan\theta = -\sqrt{3}$ , 6.  $\tan \phi = -2$ 7.  $-\frac{4\sqrt{17}}{17}$ 8.  $\cos^2 \theta + \sin^2 \theta = 1$ ,  $\sec^2 \theta = \tan^2 \theta + 1$ ,  $\csc^2 \theta = \cot^2 \theta + 1$ 9.  $4|\cos\phi|$ 10.  $\frac{\cos^2 \theta}{\sin \theta} = \frac{1 - \sin^2 \theta}{\sin \theta} = \frac{1}{\sin \theta} - \sin \theta = \csc \theta - \sin \theta$ 11.  $\sin \theta = \frac{\text{opp}}{\text{hyp}}, \ \cos \theta = \frac{\text{adj}}{\text{hyp}}, \ \tan \theta = \frac{\text{opp}}{\text{adj}}, \ \csc \theta = \frac{\text{hyp}}{\text{opp}}, \ \sec \theta = \frac{\text{hyp}}{\text{adj}}, \ \cot \theta = \frac{\text{adj}}{\text{opp}},$ 12. (a)  $\frac{\sqrt{3}}{2}$ ; (b)  $\frac{\sqrt{3}}{3}$ ; (c) 1; (d)  $\sqrt{2}$ 13. 22° 41′ 14. (a) 0.216; (b) 0.222; (c) 6.609 15. AB  $\approx 188.1\,\mathrm{m}$ 16. A  $\approx 39^\circ\,46'$ 17. about 15.92  $in^3$ 18. about 134.2 miles

19. horizontal is about 146.3 ft/sec, vertical is about 136.4 ft/sec