1. (5.1) Prove each identity.
(a) $\sec \theta-\cos \theta=\tan \theta \sin \theta$
(b) $\cos ^{4} A-\sin ^{4} A=\cos 2 A$
2. (5.2) Let $\sin A=-\frac{3}{5}$ with $270^{\circ} \leq A \leq 360^{\circ}$ and $\sin B=\frac{12}{13}$ with $90^{\circ} \leq B \leq 180^{\circ}$, find the following.
(a) $\sin (A+B)$
(b) $\cos 2 B$
3. (5.2) Find the exact value of $\cos 75^{\circ}$ using the sum of two common angles from the unit circle.
4. (5.2) Simplify without using a calculator.

$$
\cos \left(\arcsin \frac{4}{5}-\arctan 2\right)
$$

5. (5.3) Simplify.

$$
\cos \left(2 \sin ^{-1} x\right)
$$

6. $(5.3,5.4)$ If $\sin A=-\frac{\sqrt{5}}{5}$ and A is in QIII, find $\cos 2 A$ and $\cos \frac{A}{2}$.
7. (5.4) Find the exact value of $\tan \frac{\pi}{12}$ using the half-angle identity.
8. (5.4) Find $\cos x$ if $\cos 2 x=\frac{1}{2}$.
9. (6.1, 6.2) Find all solution for $0^{\circ} \leq \theta<360^{\circ}$.
(a) $\cos \theta-2 \sin \theta \cos \theta=0$
(b) $\sin \frac{\theta}{2}+\cos \theta=0$
(c) $\sin \theta+\cos \theta=1$
10. (6.2) Find all solutions in radians.

$$
\cos 2 x-3 \cos x=-2
$$

11. (6.3) Find all solutions in degrees.

$$
\sin ^{2} 3 \theta=\frac{1}{2}
$$

12. (6.3) Find all solutions $0 \leq x<2 \pi$
(a) $\cos 3 x=-\frac{\sqrt{3}}{2}$
(b) $\tan 2 x=1$
13. (6.3) Find all solutions for $0^{\circ} \leq \theta<360^{\circ}$, rounded to the nearest tenth of a degree.

$$
4 \cos ^{2} \theta-4 \cos \theta=2
$$

14. (6.3) Find all solutions for $0 \leq x<2 \pi$, rounded to the nearest 2 decimal places.

$$
\sin 2 x=\frac{3}{5}
$$

15. (7.1) In triangle $\mathrm{ABC}, \mathrm{A}=32^{\circ}, \mathrm{B}=69^{\circ}$, and $a=3.8$ inches. Find b rounded to the nearest tenth of an inch.
16. (7.1) A man standing near a building, notices that the angle of elevation to the top of the building is 64°. He then walks 240 feet farther away from the building and find the angle of elevation to the top to be 43°. How tall is the building? Round your answer to the nearest foot.
17. (7.1) The diagonals of parallelogram ABCD, meet at point M . If $\mathrm{AC}=26$ meters, $\mathrm{m} \angle \mathrm{AMB}=122^{\circ}$, and $\mathrm{m} \angle \mathrm{MBC}=30^{\circ}$, find the length of side BC. Round your answer to the nearest hundredth of a meter.

18. Answers will vary
19. (a) $\frac{63}{65}$; (b) $-\frac{119}{169}$
20. $\frac{\sqrt{6}-\sqrt{2}}{4}$
21. $\frac{11 \sqrt{5}}{25}$
22. $1-2 x^{2}$
23. $\frac{3}{5} ;-\sqrt{\frac{5-2 \sqrt{5}}{10}}$
24. $2-\sqrt{3}$
25. $\pm \frac{\sqrt{3}}{2}$
26. (a) $30^{\circ}, 90^{\circ}, 150^{\circ}, 270^{\circ}$; (b) $180^{\circ} ;(\mathrm{c}) 0^{\circ}, 90^{\circ}$
27. $2 k \pi, \frac{\pi}{3}+2 k \pi, \frac{5 \pi}{3}+2 k \pi$
28. $15^{\circ}+30^{\circ} k$
29. (a) $\frac{5 \pi}{18}, \frac{7 \pi}{18}, \frac{17 \pi}{18}, \frac{19 \pi}{18}, \frac{29 \pi}{18}, \frac{31 \pi}{18}$;
(b) $\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}, \frac{13 \pi}{8}$
30. $111.5^{\circ}, 248.5^{\circ}$
31. $0.32,1.25,3.46,4.39$
32. 6.7 inches
33. About 411 feet
34. 22.05 meters
