Exam 3 Review - Chapter 5, Sections 6.1-6.3, 7.1

- 1. (5.1) Prove each identity.
 - (a) $\sec \theta \cos \theta = \tan \theta \sin \theta$
 - **(b)** $\cos^4 A \sin^4 A = \cos 2A$
- **2.** (5.2) Let $\sin A = -\frac{3}{5}$ with $270^{\circ} \le A \le 360^{\circ}$ and $\sin B = \frac{12}{13}$ with $90^{\circ} \le B \le 180^{\circ}$, find the following.
 - (a) $\sin(A + B)$
 - (b) $\cos 2B$
- **3.** (5.2) Find the exact value of cos 75° using the sum of two common angles from the unit circle.
- **4.** (5.2) Simplify without using a calculator.

$$\cos\left(\arcsin\frac{4}{5} - \arctan 2\right)$$

5. (5.3) Simplify.

$$\cos(2\sin^{-1}x)$$

- **6.** (5.3, 5.4) If $\sin A = -\frac{\sqrt{5}}{5}$ and A is in QIII, find $\cos 2A$ and $\cos \frac{A}{2}$.
- 7. (5.4) Find the exact value of $\tan \frac{\pi}{12}$ using the half-angle identity.
- **8.** (5.4) Find $\cos x$ if $\cos 2x = \frac{1}{2}$.
- **9.** (6.1, 6.2) Find all solution for $0^{\circ} \leq \theta < 360^{\circ}$.
 - (a) $\cos \theta 2 \sin \theta \cos \theta = 0$
 - **(b)** $\sin \frac{\theta}{2} + \cos \theta = 0$
 - (c) $\sin \theta + \cos \theta = 1$
- **10.** (6.2) Find all solutions in radians.

$$\cos 2x - 3\cos x = -2$$

11. (6.3) Find all solutions in degrees.

$$\sin^2 3\theta = \frac{1}{2}$$

12. (6.3) Find all solutions $0 \le x < 2\pi$

(a)
$$\cos 3x = -\frac{\sqrt{3}}{2}$$

- **(b)** $\tan 2x = 1$
- **13.** (6.3) Find all solutions for $0^{\circ} \leq \theta < 360^{\circ}$, rounded to the nearest tenth of a degree.

$$4\cos^2\theta - 4\cos\theta = 2$$

14. (6.3) Find all solutions for $0 \le x < 2\pi$, rounded to the nearest 2 decimal places.

$$\sin 2x = \frac{3}{5}$$

- **15.** (7.1) In triangle ABC, $A = 32^{\circ}$, $B = 69^{\circ}$, and a = 3.8 inches. Find b rounded to the nearest tenth of an inch.
- 16. (7.1) A man standing near a building, notices that the angle of elevation to the top of the building is 64°. He then walks 240 feet farther away from the building and find the angle of elevation to the top to be 43°. How tall is the building? Round your answer to the nearest
- 17. (7.1) The diagonals of parallelogram ABCD, meet at point M. If AC = 26 meters, m∠AMB = 122°, and m∠MBC = 30°, find the length of side BC. Round your answer to the nearest hundredth of a meter.

Math 142 Exam 3 Review – Answers

- 1. Answers will vary
- 2. (a) $\frac{63}{65}$; (b) $-\frac{119}{169}$
- 3. $\frac{\sqrt{6} \sqrt{2}}{4}$
- 4. $\frac{11\sqrt{5}}{25}$
- 5. $1 2x^2$
- 6. $\frac{3}{5}$; $-\sqrt{\frac{5-2\sqrt{5}}{10}}$
- 7. $2 \sqrt{3}$
- 8. $\pm \frac{\sqrt{3}}{2}$
- 9. (a) 30° , 90° , 150° , 270° ; (b) 180° ; (c) 0° , 90°
- 10. $2k\pi$, $\frac{\pi}{3} + 2k\pi$, $\frac{5\pi}{3} + 2k\pi$
- 11. $15^{\circ} + 30^{\circ}k$
- 12. (a) $\frac{5\pi}{18}$, $\frac{7\pi}{18}$, $\frac{17\pi}{18}$, $\frac{19\pi}{18}$, $\frac{29\pi}{18}$, $\frac{31\pi}{18}$;
 - (b) $\frac{\pi}{8}$, $\frac{5\pi}{8}$, $\frac{9\pi}{8}$, $\frac{13\pi}{8}$
- 13. 111.5°, 248.5°
- 14. 0.32, 1.25, 3.46, 4.39
- 15. 6.7 inches
- 16. About 411 feet
- 17. 22.05 meters