1. (7.3) Find all solutions to the triangle $\triangle \mathrm{ABC}$ if $\mathrm{A}=124.3^{\circ}, a=27.3 \mathrm{~cm}, b=50.2 \mathrm{~cm}$.
2. (7.3) Find all solutions to the triangle $\triangle \mathrm{ABC}$ if $\mathrm{A}=43^{\circ}, a=31 \mathrm{ft}, b=37 \mathrm{ft}$.
3. (7.4) Find the area of $\triangle \mathrm{ABC}$. Round your answer to the nearest hundredth.
(a) $\mathrm{A}=37^{\circ}, c=2.4$ in, $b=3.6$ in
(b) $\mathrm{A}=14^{\circ} 20^{\prime}, \mathrm{C}=75^{\circ} 40^{\prime}, b=10.2 \mathrm{~cm}$
4. (7.4) Find the exact area of the triangle with dimensions $1 \mathrm{ft} \times 14 \mathrm{in} \times 5 \mathrm{in}$.
5. (7.5) Find the exact magnitude of the vector $\langle 6,9\rangle$.
6. (7.5) Find $2 \mathbf{U}-3 \mathbf{V}$ for $\mathbf{U}=7 \mathbf{i}+\mathbf{j}$ and $\mathbf{V}=2 \mathbf{i}-6 \mathbf{j}$.
7. (7.6) Find the exact angle between the vectors $\mathbf{U}=4 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{V}=\mathbf{i}-2 \mathbf{j}$.
8. (8.1) Evaluate the following for $z_{1}=1-8 i$ and $z_{2}=2+5 i$
(a) $4 z_{1}+10 z_{2}$
(b) $z_{1} z_{2}$
(c) $\frac{z_{1}}{z_{2}}$
9. (8.1) Simplify: i^{83}
10. (8.2) Write in standard form.

$$
6\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)
$$

11. (8.2) Write each complex number is trigonometric form.
(a) $-13 i$
(b) $-7+7 i$
(c) 18
12. (8.3) Use de Moivre's Theorem to find

$$
(\sqrt{3}-i)^{6}
$$

13. (8.3) For $z_{1}=4 \sqrt{2}-4 i \sqrt{2}$, and $z_{2}=-\sqrt{3}+i$, convert each into trigonometric form and evaluate each of the following. Leave your answers in trigonometric form.
(a) $z_{1} z_{2}$
(b) $\frac{z_{1}}{z_{2}}$
14. (8.4) Find the three cube roots of $-8 i$. Write your answers in standard form.
15. (8.4) Find all solutions to the following equation. Write your answers in trigonometric form.

$$
x^{5}+243=0
$$

16. (8.5) Find two sets of polar coordinates with $0 \leq \theta<2 \pi$, that represent the same point as the rectangular coordinate, $(-1, \sqrt{3})$.
17. (8.5) Convert the rectangular equations to polar. In each equation, isolate r.
(a) $y=5$
(b) $x^{2}+(y-4)^{2}=16$
18. (8.5) Convert the polar equations to rectangular.
(a) $r=4 \sec \theta$
(b) $r=7$
(c) $r=\frac{2}{3 \cos \theta-4 \sin \theta}$
19. (8.6) Without using a graphing utility, sketch the graph of the polar curve $r=4 \sin 3 \theta$.
20. No triangle is possible
21. $\mathrm{B} \approx 54^{\circ}, \mathrm{C} \approx 83^{\circ}, c \approx 45 \mathrm{ft} ; \mathrm{B}^{\prime} \approx 126^{\circ}$, $\mathrm{C}^{\prime} \approx 11^{\circ}, c^{\prime} \approx 9 \mathrm{ft} ;$
22. (a) $2.60 \mathrm{in}^{2}$; (b) $12.48 \mathrm{~cm}^{2}$
23. $\frac{21 \sqrt{31}}{4} \mathrm{in}^{2}$
24. $3 \sqrt{13}$
25. $8 \mathbf{i}+20 \mathbf{j}$
26. $\arccos \left(-\frac{2 \sqrt{5}}{25}\right)$
27. (a) $24+18 i$; (b) $42-11 i$; (c) $-\frac{38}{29}-\frac{21}{29} i$
28. $-i$
29. $-3+3 i \sqrt{3}$
30. (a) $13 \operatorname{cis} \frac{3 \pi}{2}$; (b) $7 \sqrt{2} \operatorname{cis} \frac{3 \pi}{4}$; (c) $18 \operatorname{cis} 0$
31. -64
32. (a) 16 cis 105°; (b) 4 cis 165°
33. $2 i,-\sqrt{3}-i, \sqrt{3}-i$
34. $3 \operatorname{cis} 36^{\circ}, 3 \operatorname{cis} 108^{\circ}, 3 \operatorname{cis} 180^{\circ}, 3 \operatorname{cis} 252^{\circ}, 3 \operatorname{cis} 324^{\circ}$
35. $\left(2, \frac{2 \pi}{3}\right),\left(-2, \frac{5 \pi}{3}\right)$
36. (a) $r=5 \csc \theta$; (b) $r=8 \sin \theta$
37. (a) $x=4$, (b) $x^{2}+y^{2}=49$; (c) $3 x-4 y=2$
38. graph:

