Math Lab help okay

CONTENT This exam will cover the material discussed in the Trig Review (Appendix D), sections 1.4, 1.5, all of chapter 2.

TOPICS You should be comfortable with the following topics:

Limits, evaluating a limit analytically, evaluating a limit numerically, ε - δ definition of the limit, indeterminate form of a limit, the Squeeze Theorem, continuity, removable discontinuity, one-sided limits, $f(x) = \llbracket x \rrbracket$ (the greatest integer function), Intermediate Value Theorem, vertical asymptotes, derivative, limit definition of the derivative, alternate form of the limit definition of the derivative, non-differentiability, the graph of the derivative.

FORMULAS You should have the following formulas memorized.

Limit Definition of the Derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

PRACTICE PROBLEMS

- (App D) One of the acute angles in a right triangle measures 25°. If the hypotenuse is 6 feet long, find the length of the side opposite the 25° angle. Round your answer to 3 decimal places.
- **2.** (App D) For each equation, find *all* solutions for θ such that $0 \le \theta < 2\pi$.

(a)
$$\sec \theta = \frac{2\sqrt{3}}{3}$$
 (b) $2\sin^2 \theta - \sin \theta = 1$

3. (1.4) Use the Law of Exponents to simplify each expression.

(a)
$$\frac{(6x^2)^3}{4x^7}$$
 (b) $\frac{\sqrt{y\sqrt[3]{y}}}{\sqrt{xy}}$

4. (1.4) Find the function in the form $f(x) = Cb^x$ whose graph passes through the points (-1, 8) and $(1, \frac{1}{2})$.

Alternate Form of the Derivative
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

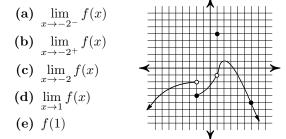
- 5. (1.5) Using the functions f(x) = 3x + 1 and $g(x) = 8 + \sqrt{x}$, find the following.
 - (a) (g ∘ f)(16)
 (b) g⁻¹(x), and its domain
 (c) (f⁻¹ ∘ q⁻¹)(24)
- **6.** (1.5) Write the expression as a single logarithm.
 - (a) $\frac{1}{2} \ln a (\ln b + 2 \ln c)$ (b) $5 \ln x - \ln y + 3 \ln z$
- **7.** (1.5) Solve. Round your answer to three decimal places.

(a)
$$3^x = \frac{1}{9}$$
 (b) $\ln e^{2u} = 10$
(c) $1.2e^t = 700$

8. (2.2) Find the value of the limit numerically by creating a table using x-values: -2.1, -2.01, -2.001, -1.999, -1.99, -1.99.

$$\lim_{x \to -2} \left(\frac{\ln(x^2 + 1) - \ln(5)}{x + 2} \right)$$

9. (2.2) Use the graph of f to answer the following:



10. (2.2) Find the limit.

- (a) $\lim_{x \to 2^+} \frac{x}{4-x^2}$ (b) $\lim_{x \to 4} \frac{x+4}{x^2-16}$ (c) $\lim_{x \to 2} \frac{1}{|x-2|}$ (d) $\lim_{\theta \to \pi/2^-} \tan \theta$
- 11. (2.3) Find the limit.

(a)
$$\lim_{x \to 2} \frac{2}{x+2}$$
 (b) $\lim_{x \to -3} \frac{x^2 - 9}{x+3}$
(c) $\lim_{\Delta x \to 0} \frac{2(x + \Delta x)^2 - 2x^2}{\Delta x}$
(d) $\lim_{h \to 0} \frac{\sqrt{h+1} - 1}{h}$

12. (2.4) Find the limit L. Then use the ε - δ definition to prove that the limit is L.

$$\lim_{x \to 5} x^2 + 2$$

13. (2.5) Determine the intervals on which the functions are continuous.

(a)
$$g(x) = \frac{x^2 - 14x + 49}{x^2 - 49}$$

(b) $r(x) = \begin{cases} x^2 - 3x & x < 3\\ \sqrt{x - 3} & x \ge 3 \end{cases}$

14. (2.5) For g(x) = 2[x] - 1, find each of the following limits.

(a)
$$\lim_{x\to 3^-} g(x)$$
 (b) $\lim_{x\to 3^+} g(x)$ (c) $\lim_{x\to 3} g(x)$

15. (2.6) Find each of the limits, if possible.

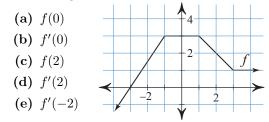
(a)
$$\lim_{x \to -\infty} \frac{x^2 - 7x + 1}{5x - 9}$$

(b) $\lim_{x \to \infty} \frac{3x^3 + 19}{2x^3 + 5x^2 - x}$
(c) $\lim_{x \to -\infty} \frac{\sqrt{9x^2 - x + 7}}{x + 26}$

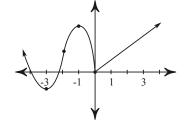
16. (2.7) Use the limit definition to find the derivative.

$$\frac{d}{dx} \left\lfloor \frac{1}{x-3} \right\rfloor$$

- 17. (2.7) Find the equation of the tangent line to the graph of $f(x) = x^2 3x 28$ at the point x = 6.
- **18.** (2.7) Use the graph of f to find the value of the following:



19. The graph of f is shown below. Sketch the graph of f'.



20. (2.8) Use the definition of the derivative to prove f'(x) does not exist for f(x) = |x + 1|, at x = -1.

Answers

1. 2.536 feet **2.** (a) $\frac{\pi}{6}$, $\frac{11\pi}{6}$; (b) $\frac{\pi}{2}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$ **3.** (a) $\frac{54}{x}$; (b) $\frac{\sqrt[6]{y}}{\sqrt{x}}$ 4. $f(x) = 2(\frac{1}{4})^x$ **5.** (a) 15; (b) $g^{-1}(x) = (x-8)^2, x \ge 8$; (c) 85 **6.** (a) $\ln\left(\frac{\sqrt{a}}{bc^2}\right)$; (b) $\ln\left(\frac{x^5z^3}{y}\right)$ **7.** (a) -2; (b) 5; (c) 6.369 -2.1-2.01-2.001x8. $\overline{f(x)}$ -0.7881-0.7989-0.7999-1.999x-1.99-1.9f(x)-0.8001-0.8012-0.8121 $L = -\frac{4}{5}$ **9.** (a) -2; (b) -4; (c) d.n.e.; (d) -1; (e) 5

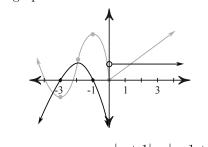
- **10.** (a) $-\infty$; (b) d.n.e.; (c) ∞ ; (d) ∞
- **11.** (a) $\frac{1}{2}$; (b) -6; (c) 4x; (d) $\frac{1}{2}$
- **12.** L = 25; Given any $\varepsilon > 0$, let $\delta = \frac{\varepsilon}{11}$. For 4 < x < 6, if $|x 5| < \delta = \frac{\varepsilon}{11} \Rightarrow$ $|x^2 + 2 - 27| = |x^2 - 25| = |x + 5||x - 5| < 11|x - 5| < (11) \left(\frac{\varepsilon}{11}\right) = \varepsilon$.
- **13.** (a) $(-\infty, -7) \cup (-7, 7) \cup (7, \infty)$; (b) $(-\infty, \infty)$
- **14.** (a) 3; (b) 5; (c) d.n.e.
- **15.** (a) $-\infty$; (b) $\frac{3}{2}$; (c) -3

$$16. \quad \frac{d}{dx} \left[\frac{1}{x-3} \right] = \lim_{h \to 0} \frac{\frac{1}{x+h-3} - \frac{1}{x-3}}{h} = \\ \lim_{h \to 0} \frac{x-3 - (x+h-3)}{h(x+h-3)(x-3)} = \\ \lim_{h \to 0} \frac{-h}{h(x+h-3)(x-3)} = \\ \frac{1}{h \to 0} \frac{-1}{(x+h-3)(x-3)} = \frac{-1}{(x-3)^2}$$

17.
$$y = 9x - 64$$

18. (a) 3; (b) 0; (c) 2; (d)
$$-1$$
; (e) $\frac{3}{2}$

19. see graph



20.
$$f'(-1) = \lim_{x \to -1} \frac{|x+1| - |-1+1|}{x - (-1)} = \lim_{x \to -1} \frac{|x+1|}{x + 1}$$

But $\lim_{x \to -1^+} \frac{|x+1|}{x + 1} = 1$ and
 $\lim_{x \to -1^+} \frac{|x+1|}{x + 1} = 1$

 $\lim_{x \to -1^{-1}} \frac{1}{x+1} = -1$ Therefore, the limit does not exist as $x \to -1$, so it follows that f'(-1) does not exist.