CONTENT This exam will cover the material discussed in Sections 8.1-8.3, 9.3, 10.1-10.4.
TOPICS You should be comfortable with the following topics:
Arc length, surface area of a solid of revolution, moments, center of mass, centroid of a planar lamina, the general and particular solutions to a differential equation, initial conditions, separable differential equations, parametric equations, converting rectangular to parametric and parametric to rectangular, graphing a parametric equation, indicating orientation, the first and second derivative of a parametric equation, arc length of a parametric equation, polar coordinates, converting polar to rectangular and rectangular to polar, graphing a polar equation, finding the slope of a polar equation, finding points of horizontal and vertical tangency, area of a polar curve, points of intersection of polar graphs.

FORMULAS You should have the following formulas memorized.

Arc Length
$s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$
Area of Surface of Revolution
$S=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$

Center of Mass

$m=\rho \int_{a}^{b}(f(x)-g(x)) d x$
$M_{x}=\rho \int_{a}^{b}\left[\frac{f(x)+g(x)}{2}\right](f(x)-g(x)) d x$
$M_{y}=\rho \int_{a}^{b} x(f(x)-g(x)) d x$
$(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)$
Derivative of a Parametric Curve
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$

2nd Derivative of a Parametric Curve

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{\frac{d x}{d t}}
$$

Arc Length a Parametric Curve
$s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

Polar to Rectangular

$x=r \cos \theta \quad y=r \sin \theta$
Rectangular to Polar
$r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x}$
Slope in Polar Form
$\frac{d y}{d x}=\frac{f(\theta) \cos \theta+f^{\prime}(\theta) \sin \theta}{-f(\theta) \sin \theta+f^{\prime}(\theta) \cos \theta}$
Area in Polar Coordinates
$A=\frac{1}{2} \int_{\alpha}^{\beta}[f(\theta)]^{2} d \theta$

RECOMMENDED EXERCISES

Sec 8.1 \#1-20; Sec $8.2 \# 7-18,30,31,32,37$; Sec $8.3 \# 25-35,37 ;$ Ch 8 Rev \#1-4, 6, 9, 10, 13-16; Sec 9.3 \#1-22; Ch 9 Rev \#9, 10, 11; Sec 10.1 \#1-22; Sec $10.2 \# 1-8,11-20,30,41-46,48,51,52$; Sec 10.3 \#1-46, 54-64; Sec 10.4 \#1-12, 17-42, 45-48; Ch 10 Rev \#1-18, 21-26, 37-40

1. (8.1) Find the exact length of the curve,

$$
y=\frac{1}{3} \sqrt{x}(x-3) \quad 1 \leq x \leq 4
$$

2. (8.2) Find the area of the surface obtained by revolving the following curve about the x-axis.

$$
y=\sqrt{e^{x}+1} \quad 0 \leq x \leq 1
$$

3. (8.3) Find m, M_{x}, M_{y}, \bar{x}, and \bar{y} associated with calculating the center of mass of the region bounded by

$$
y=1 / x, \quad y=x, \quad x=2
$$

4. (9.3) Find the general solution to differential equation. Write your answer in the form $y=f(x)$.

$$
y^{\prime}=y \cos x
$$

5. (9.3) The rate of change of s with respect to time, t, is inversely proportional to the square root of s.
(a) Write a differential equation for the given statement.
(b) Find the general solution to this equation.
(c) If initially $s=100$ and after six seconds $s=144$, what would the value of s be after 10 seconds?
6. (10.1) Sketch the graph of the parametric curve.

$$
x=6 \cos (t), \quad y=3 \sin (t)
$$

7. (10.1) Convert the parametric equations to rectangular equations by eliminating the parameter.
(a) $x=t+4, y=t^{2}$
(b) $x=6 \sec \theta, y=-1+3 \tan \theta$
8. (10.2) Consider the parametric equation

$$
x=t^{2}-4 t, \quad y=\ln t
$$

(a) Find the slope of the tangent line at $t=3$
(b) Find all points of vertical tangency
(c) Find the concavity at $t=3$
9. (10.3) Find the length of the curve represented by the parametric equations over the given interval, $0 \leq \theta \leq \pi$.

$$
x=\cos \theta+\theta \sin \theta, \quad y=\sin \theta-\theta \cos \theta
$$

10. (10.3) Find three sets of polar coordinates that represent the same point as the rectangular coordinate, $(-1, \sqrt{3})$. Include at least one point with a negative radius and at least one point with a negative angle.
11. (10.3) Convert the polar equation to rectangular form.
(a) $r=4 \sec \theta$
(b) $r=7$
(c) $r=\frac{2}{3 \cos \theta-4 \sin \theta}$
12. (10.3) Sketch the graph of $r=4 \sin 2 \theta$.
13. (10.3) Consider the polar equation, $r=\sin ^{2} \theta$
(a) Find $d y / d x$
(b) Find all points of vertical and horizontal tangency.
14. (10.4) find the points of intersection of $r=$ $2+\sin \theta$ and $r=2-\sin \theta$.
15. (10.4) Find the area outside $r=2 \sin 4 \theta$ and inside $r=2$.
16. $\frac{10}{3}$
17. $\pi(e+1)$
18. $m=\rho\left(\frac{3}{2}-\ln (2)\right) ; \quad M_{y}=\frac{4}{3} \rho$;
$M_{x}=\frac{11}{12} \rho ; \quad \bar{x}=\frac{8}{9-6 \ln (2)} ;$
$\bar{y}=\frac{11}{18-12 \ln (2)}$
19. $y=C e^{\sin x}$
20. (a) $\frac{d s}{d t}=\frac{k}{\sqrt{s}}$
(b) $s=\left(\frac{3}{2} k t+C\right)^{2 / 3}$
(c) $s(10)=\left(\frac{6640}{3}\right)^{2 / 3}$
21. see graph

22. (a) $y-x^{2}+8 x-16=0$
(b) $\frac{x^{2}}{36}-\frac{(y+1)^{2}}{9}=1$
23. (a) $\frac{1}{6}$
(b) $t=2$
(c) $-\frac{1}{9}$, concave down
24. $\frac{\pi^{2}}{2}$ units
25. $\left(2, \frac{2 \pi}{3}\right),\left(-2, \frac{5 \pi}{3}\right),\left(2,-\frac{4 \pi}{3}\right)$
26. (a) $x=4$
(b) $x^{2}+y^{2}=49$
(c) $3 x-4 y=2$
27. see graph

28. (a) $\frac{3 \sin \theta \cos \theta}{2-3 \sin ^{2} \theta}$
(b) horizontal: $\left(1, \frac{\pi}{2}\right),\left(1, \frac{3 \pi}{2}\right)$; vertical: $\left(\frac{2}{3}, \pm \arcsin \frac{\sqrt{6}}{3}\right)$, $\left(\frac{2}{3}, \pi \pm \arcsin \frac{\sqrt{6}}{3}\right)$
29. $(2,0)$ and $(2, \pi)$
30. 2π sq. units
