The Differential Operator

We define the linear operator D by $D(f)=f^{\prime}$, called the derivative operator. Higher-order derivative operators can be defined by a composition, $D^{k}=D\left(D^{k-1}\right)$ for $k=1,2,3, \ldots$ and

$$
D^{k}(f)=\frac{d^{k}}{d x^{k}}[f(x)]
$$

For example, $D(\cos x)=-\sin x$, and $D^{3}\left(x^{4}\right)=D^{2}\left(4 x^{3}\right)=D\left(12 x^{2}\right)=24 x$.
Differential equations can be written using the derivative operator. The equation $y^{\prime \prime}+3 y^{\prime}-21 y=0$, can be written $D^{2}(y)+3 D(y)-21 y=0$ or simply, $\left(D^{2}+3 D-21\right) y=0$. In this example, we call the combination of derivative operators applied to y, a linear differential operator. In general, the linear differential operator of order n is

$$
L=D^{n}+a_{1} D^{n-1}+a_{2} D^{n-2}+\ldots+a_{n-1} D+a_{n}
$$

Example 1 Apply the differential operator $L=D^{2}+4 x D$ to the function, $y=x^{3}+\cos x$.

$$
\begin{align*}
L y & =\left(D^{2}+4 x D\right)\left(x^{3}+\cos x\right) \\
& =D^{2}\left(x^{3}+\cos x\right)+4 x D\left(x^{3}+\cos x\right) \\
& =D\left(3 x^{2}-\sin x\right)+4 x\left(3 x^{2}-\sin x\right) \tag{1}\\
& =6 x-\cos x+12 x^{3}-4 x \sin x
\end{align*}
$$

Example 2 Apply the differential operator $L=(D-3)^{2}$ to the function, $y=x e^{3 x}$.

$$
\begin{align*}
L y & =(D-3)^{2} x e^{3 x} \\
& =(D-3)\left(D\left(x e^{3 x}\right)-3 x e^{3 x}\right) \\
& =(D-3)\left(e^{3 x}+3 x e^{3 x}-3 x e^{3 x}\right) \tag{2}\\
& =(D-3) e^{3 x} \\
& =3 e^{3 x}-3 e^{3 x} \\
& =0
\end{align*}
$$

In this example, notice $L y=0$. We say the differential operator L "annihilated" y.
The Annihilator Method
The annihilator method can be used to transform the non-homogeneous linear equation of the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

into a homogeneous equation by multiplying both sides by a linear differential operator $A(D)$, that will "annihilate" the term $f(x)$.

Example 3 Use the annihilator method to convert the non-homogeneous equation to a homogeneous equation.

$$
y^{\prime \prime}-12 y^{\prime}+32 y=4 \cos 3 x
$$

The term $4 \cos 3 x$ will be annihilated by $A(D)=D^{2}+9$. First rewrite the equation using the derivative operator, then apply $A(D)$ to both sides.

$$
\begin{gathered}
\left(D^{2}-12 D+32\right) y=4 \cos 3 x \\
\Longrightarrow\left(D^{2}+9\right)\left(D^{2}-12 D+32\right) y=\left(D^{2}+9\right)(4 \cos 3 x) \\
\Longrightarrow\left(D^{2}+9\right)\left(D^{2}-12 D+32\right) y=0 \\
\Longrightarrow\left(D^{2}+9\right)(D-4)(D-8) y=0
\end{gathered}
$$

We can now proceed to solve this differential equation using the method of undetermined coefficients, with $y_{c}=c_{1} e^{4 x}+c_{2} e^{8 x}$ and the trial solution for $y_{p}, y_{p}=A \cos 3 x+B \sin 3 x$.

Determining the differential operator that annihilate a given $f(x)$ should be done after sufficient practice solving homogeneous linear equations. However, the following table is a summary of common annihilators.

$\boldsymbol{f}(x)$	Annihilator
$a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$	D^{n+1}
$e^{r x}$	$D-r$
$x^{n} e^{r x}$	$(D-r)^{n+1}$
$\cos b x$ or $\sin b x$	$\left(D^{2}+b^{2}\right)^{n+1}$
$x^{n} \cos b x$ or $x^{n} \sin b x$	$(D-a)^{2}+b^{2}=D^{2}-2 a D+a^{2}+b^{2}$
$e^{a x} \cos b x$ or $e^{a x} \sin b x$	$\left((D-a)^{2}+b^{2}\right)^{n+1}=\left(D^{2}-2 a D+a^{2}+b^{2}\right)^{n+1}$
$x^{n} e^{a x} \cos b x$ or $x^{n} e^{a x} \sin b x$	

Note: To annihilate the sum of two functions $f(x)+g(x)$, if $A_{1}(D)$ annihilates $f(x)$ and $A_{2}(D)$ annihilates $g(x)$, then use the composition of the two annihilators, $\left(A_{1}(D)\right)\left(A_{2}(D)\right)$.

For problems 1-2, apply the given differential operator, L to the function $f(x)$.

1. $L=D^{2}+5 x^{2} D-2 x, f(x)=x^{2}-\ln (x)$
2. $L=D^{2}+9, f(x)=13 \sin 3 x$
3. Verify both differential operators, $L_{1}=$ $(D-2) D^{2}$ and $L_{2}=D^{2}(D-2)$ will annihilate $f(x)=e^{2 x}-3 x$, hence showing they are commutative.

For problems 4-7, determine the annihilator of the given function, then verify your answer by applying it to the function.
4. $f(x)=2 e^{-6 x}$
5. $f(x)=17 \cos 5 x$
6. $f(x)=x e^{4 x}$
7. $f(x)=e^{-x}-10 x+5$

For problems 8-12, determine the annihilator of the given function.
8. $f(x)=e^{-2 x}(2 \cos x+8 \sin x)$
9. $f(x)=\left(7+x^{2}\right) e^{2 x}$
10. $f(x)=e^{3 x}(x-8 \sin 7 x)+3 x^{2} \cos x$
11. $f(x)=12 x^{3} e^{-x}(\cos 5 x)$
12. $f(x)=\sin ^{2} x$

For problems 13-15, apply the annihilator method and write the corresponding homogeneous equation using differential operator notation, then determine an appropriate trial solution. Do not solve for the constants.
13. $y^{\prime \prime}+13 y^{\prime}-30 y=e^{3 x}$
14. $y^{\prime \prime}+8 y^{\prime}+16 y=2 x e^{-4 x}$
15. $y^{\prime \prime}+4 y^{\prime}+13 y=9 e^{-2 x} \sin 3 x$

Answers

1. $8 x^{3}-5 x+2+\frac{1}{x^{2}}+2 x \ln x$
2. 0
3. $(D-2) D^{2}\left(e^{2 x}-3 x\right)=0 ; D^{2}(D-2)\left(e^{2 x}-3 x\right)=0$
4. $D+6$
5. $D^{2}+25$
6. $(D-4)^{2}$
7. $(D+1) D^{2}$
8. $D^{2}+4 D+5$
9. $(D-2)^{3}$
10. $(D-3)^{2}\left(D^{2}-6 D+58\right)\left(D^{2}+1\right)^{3}$
11. $\left(D^{2}+2 D+26\right)^{4}$
12. $D\left(D^{2}+4\right)$
13. $(D-3)(D+15)(D-2) y=0 ; y_{p}=A e^{3 x}$
14. $(D+4)^{4} y=0 ; y_{p}=A x^{2} e^{-4 x}+B x^{3} e^{-4 x}$
15. $\left(D^{2}+4 D+13\right)^{2} y=0 ; y_{p}=x e^{-2 x}(A \cos 3 x+B \sin 3 x)$
