

Component	Description	Unit of Measure
$q(t)$	Flow of charge	coulombs ($\mathrm{C}=\mathrm{A} \cdot \mathrm{sec}$)
$i(t)=q^{\prime}(t)$	Current	amperes (A)
Resistors, R	Resists flow of charge. Used to control flow. $\Delta V_{R}=i R$	ohms ($\Omega=\mathrm{V} / \mathrm{A}$)
Capacitors, C	Stores charge and opposes passage of current. Used to store voltage. $\Delta V_{C}=\frac{1}{C} q$	farads ($\mathrm{F}=\mathrm{A} \cdot \mathrm{sec} / \mathrm{V}$)
Inductors, L	Opposes charge in current flowing through it. Used to store current. $\Delta V_{L}=L \frac{d i}{d t}$	henrys ($\mathrm{H}=\Omega \cdot \mathrm{sec}$)
Electromotive force, $E(t)$	Source of voltage	volts (V)

Kirchhoff's Second Law

As a consequence of the law of conservation of energy, the sum of the voltage drops around a closed circuit is zero.

$$
\begin{gathered}
\Delta V_{L}+\Delta V_{R}+\Delta V_{C}-E(t)=0 \\
\Longrightarrow L \frac{d i}{d t}+R i+\frac{1}{C} q=E(t)
\end{gathered}
$$

1. Find an equation for the current, $i(t)$ for $t>0$ in a circuit with resistance of 7 ohms, inductance of 5 henrys and no capacitors (an RL circuit) and an electromotive force of 70 V . Assume that the current at $t=0$ is 2 amperes.
2. An RC circuit has a resistance of 5Ω, a capacitance of $\frac{1}{50} \mathrm{~F}$, and an electromotive force of 100 V . If the capacitor is uncharged initially, determine the current in the circuit for $t>0$.
3. Find the current of an RL circuit with $E(t)=$ $10 \sin 4 t, R=2 \Omega, L=\frac{2}{3} \mathrm{H}$, and there is no current flowing initially.
4. Determine the current flowing in an RC circuit if $\mathrm{R}=2 \Omega, \mathrm{C}=15 \mathrm{~F}$, the capacitor is initially uncharged and the driving EMF is given by $E(t)=A e^{-k t}$, where A and k are constants.
5. $i(t)=10-8 e^{-7 t / 5}$
6. $i(t)=20 e^{-10 t}$
7. $i(t)=\frac{3}{5}(3 \sin 4 t-4 \cos 4 t)+\frac{12}{5} e^{-3 t}$
8. $i(t)=\frac{15 A}{1-30 k}\left(\frac{1}{30} e^{-t / 30}-k e^{-k t}\right)$
