

Component	Description	Unit of Measure
q(t)	Flow of charge	coulombs (C = A \cdot sec)
i(t) = q'(t)	Current	amperes (A)
Resistors, R	Resists flow of charge. Used to control flow.	ohms $(\Omega = V/A)$
	$\Delta V_R = iR$	
Capacitors, C	Stores charge and opposes passage of current. Used to store voltage.	farads (F = A \cdot sec/V)
	$\Delta V_C = \frac{1}{C}q$	
Inductors, L	Opposes charge in current flowing through it. Used to store current.	henrys (H = $\Omega \cdot \sec$)
	$\Delta V_L = L \frac{di}{dt}$	
Electromotive force, $E(t)$	Source of voltage	volts (V)

Kirchhoff's Second Law

As a consequence of the law of conservation of energy, the sum of the voltage drops around a closed circuit is zero.

$$\Delta V_L + \Delta V_R + \Delta V_C - E(t) = 0$$
$$\implies L\frac{di}{dt} + Ri + \frac{1}{C}q = E(t)$$

- 1. Find an equation for the current, i(t) for t > 0in a circuit with resistance of 7 ohms, inductance of 5 henrys and no capacitors (an RL circuit) and an electromotive force of 70 V. Assume that the current at t = 0 is 2 amperes.
- 2. An RC circuit has a resistance of 5 Ω , a capacitance of $\frac{1}{50}$ F, and an electromotive force of 100 V. If the capacitor is uncharged initially, determine the current in the circuit for t > 0.
- **3.** Find the current of an RL circuit with $E(t) = 10 \sin 4t$, $R = 2 \Omega$, $L = \frac{2}{3}$ H, and there is no current flowing initially.
- 4. Determine the current flowing in an RC circuit if $R = 2 \Omega$, C = 15 F, the capacitor is initially uncharged and the driving EMF is given by $E(t) = Ae^{-kt}$, where A and k are constants.

ODE - Circuits

- 1. $i(t) = 10 8e^{-7t/5}$
- **2.** $i(t) = 20e^{-10t}$
- **3.** $i(t) = \frac{3}{5}(3\sin 4t 4\cos 4t) + \frac{12}{5}e^{-3t}$
- **4.** $i(t) = \frac{15A}{1-30k} \left(\frac{1}{30} e^{-t/30} k e^{-kt} \right)$