First-Order Linear DE

Form: $y^{\prime}(x)+p(x) y(x)=q(x)$
Integrating factor: $I(x)=e^{\int p(x) d x}$

Bernoulli Equations

Form: $y^{\prime}+p(x) y=q(x) y^{n}$
Strategy: Divide through by y^{n}, multiply by $1-n$ then use the integrating factor:

$$
I(x)=e^{\int(1-n) p(x) d x}
$$

Homogeneous DE

Form: $\frac{d y}{d x}=f(x, y)$, where $f(t x, t y)=f(x, y)$
Strategy: Let $y=u x$, DE becomes separable

Exact DE

The DE $F_{x}(x, y) d x+F_{y}(x, y) d y=0$ is exact if $F_{x y}(x, y)=F_{y x}(x, y)$.

The solution is $F(x, y)=C$

Integrating Factor

If $M(x, y) d x+N(x, y) d y=0$ is not exact:
a) If $p(x)=\frac{M_{y}-N_{x}}{N}$ is independent of y, use the integrating factor: $\mu(x)=e^{\int p(x) d x}$
b) If $q(y)=\frac{N_{x}-M_{y}}{M}$ is independent of x, use the integrating factor: $\mu(y)=e^{\int q(y) d y}$

Euler's Method
Given $y^{\prime}=f(x, y) \quad y\left(x_{0}\right)=y_{0}$

$$
y_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right)
$$

1st and 2nd-Order Circuits

$\frac{d i}{d t}+\frac{R}{L} i+\frac{1}{L C} q=\frac{1}{L} E(t)$
where $i(t)=\frac{d q}{d t}$

Mixing Problems
$W^{\prime}(t)=R_{1}-R_{2}$
$Q^{\prime}(t)=C_{1} R_{1}-\frac{Q}{W(t)} R_{2}$
Variation of Parameters
Form: $y^{\prime \prime}+a(x) y^{\prime}+b(x) y=F(x)$, with solutions to the homogeneous case: y_{1} and y_{2}
$y_{p}=y_{1} \int \frac{-y_{2} F(x)}{W\left(y_{1}, y_{2}\right)} d x+y_{2} \int \frac{y_{1} F(x)}{W\left(y_{1}, y_{2}\right)} d x$

Spring Problems

$$
m y^{\prime \prime}(t)+c y^{\prime}(t)+k y(t)=F(t)
$$

where m is the mass of the weight, c is the damping constant, k is the spring constant, and F is an external force.

Cauchy-Euler Equations

Form: $a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0$
Let $x=e^{u}$ which leads to

$$
a r(r-1)+b r+c=0
$$

and $y(u)=e^{r u}$, substitute back to find $y(x)$
Method of Frobenius For $x^{2} y^{\prime \prime}+x p(x) y^{\prime}+$ $q(x) y=0, r_{1}$ and r_{2} are the real roots of the indicial equation: $r(r-1)+p_{0} r+q_{0}=0$

1. If $r_{1}-r_{2}$ is not an integer,

$$
y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}} \quad \text { and } \quad y_{2}=\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}
$$

2. If $r_{1}-r_{2}$ is a positive integer,
$y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}} \quad$ and $\quad y_{2}=A y_{1} \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}$
where A is a constant and may turn out to be zero.
3. If $r_{1}=r_{2}=r$,

$$
y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r} \quad \text { and } \quad y_{2}=y_{1} \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n+r}
$$

Common Laplace Transforms
$\mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}}$
$\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a}$
$\mathcal{L}[\sin b t]=\frac{b}{s^{2}+b^{2}}$
$\mathcal{L}[\cos b t]=\frac{s}{s^{2}+b^{2}}$
$\mathcal{L}[\sinh b t]=\frac{b}{s^{2}-b^{2}}$
$\mathcal{L}[\cosh b t]=\frac{s}{s^{2}-b^{2}}$
$\mathcal{L}[\delta(t-a)]=e^{-a s}$

Laplace Transform of Derivatives

$$
\begin{array}{r}
\mathcal{L}\left[y^{(n)}\right]=s^{n} \mathcal{L}[y]-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\ldots \\
\ldots-s y^{(n-2)}(0)-y^{(n-1)}(0)
\end{array}
$$

The First Shifting Theorem
If $\mathcal{L}[f(t)]=F(s)$ then

$$
\mathcal{L}\left[e^{a t} f(t)\right]=F(s-a)
$$

The Second Shifting Theorem
If $\mathcal{L}[f(t)]=F(s)$ then

$$
\mathcal{L}[u(t-a) f(t-a)]=e^{-a s} F(s)
$$

Convolution Product
$(f * g)(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau$

