Consider the equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0 \tag{1}
\end{equation*}
$$

where $x=0$ is a regular singular point. Since $p(x)$ and $q(x)$ are analytic at $x=0$, they can be represented as

$$
p(x)=\sum_{n=0}^{\infty} p_{n} x^{n} \quad \text { and } \quad q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}, \quad \text { for }|x|<R
$$

for some real $R>0$. Let r_{1} and r_{2} be real roots to the indicial equation:

$$
\begin{equation*}
r(r-1)+p_{0} r+q_{0}=0 \tag{2}
\end{equation*}
$$

with $r_{1} \geq r_{2}$.

Theorem (Method of Frobenius)

The two linear independent solutions to (1) on $(0, \infty)$, with a regular singular point at $x=0$, and roots r_{1} and r_{2} to the indicial equation (2) can be determined as follows:

1. If $r_{1}-r_{2}$ is not an integer,

$$
y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}} \quad \text { and } \quad y_{2}=\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}
$$

2. If $r_{1}-r_{2}$ is a positive integer,

$$
y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}} \quad \text { and } \quad y_{2}=A y_{1} \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}
$$

where A is a constant and may turn out to be zero.
3. If $r_{1}=r_{2}=r$,

$$
y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r} \quad \text { and } \quad y_{2}=y_{1} \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n+r}
$$

Exercises

For each equation, (a) find the roots of the indicial equation and give the general form of the solution, (b) determine the recurrence relation for a_{n}, then (c) find two linearly independent solutions on $(0, \infty)$. If you cannot determine a general pattern for the coefficients of your power series, write the first 4 non-zero terms.

1. $3 x^{2} y^{\prime \prime}-x(x+8) y^{\prime}+6 y=0$
2. $4 x^{2} y^{\prime \prime}+3 x y^{\prime}+x y=0$
3. $x^{2} y^{\prime \prime}+x^{2} y^{\prime}-2 y=0$
4. $x^{2} y^{\prime \prime}+x y^{\prime}-(1+x) y=0$
5. $x^{2} y^{\prime \prime}+5 x y^{\prime}+(x+4) y=0$
6. $x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+4 y=0$

Answers

1. (a) $r_{1}=3, r_{2}=\frac{2}{3} ; y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+3} ; y_{2}=\sum_{n=0}^{\infty} b_{n} x^{n+2 / 3}$;
(b) $a_{n}=\frac{n+2}{n(3 n+7)} a_{n-1} ; b_{n}=\frac{3 n-1}{3 n(3 n-7)} b_{n-1}$
(c) $y_{1}=a_{0} x^{3}\left[1+\sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{2 \prod_{k=1}^{n}(3 k+7)} x^{n}\right] ; y_{2}=b_{0} x^{2 / 3} \sum_{n=0}^{\infty} \frac{(3 n-4)(3 n-1)}{4 \cdot n!\cdot 3^{n}} x^{n}$
2. (a) $r_{1}=\frac{1}{4}, r_{2}=0 ; y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+1 / 4} ; y_{2}=\sum_{n=0}^{\infty} b_{n} x^{n}$;
(b) $a_{n}=-\frac{1}{n(4 n+1)} a_{n-1} ; b_{n}=-\frac{1}{n(4 n-1)} b_{n-1}$
(c) $y_{1}=a_{0} x^{1 / 4}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!\prod_{k=1}^{n}(4 k+1)} x^{n}\right] ; y_{2}=b_{0}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!\prod_{k=1}^{n}(4 k-1)} x^{n}\right]$
3. (a) $r_{1}=2, r_{2}=-1 ; y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+2} ; y_{2}=A y_{1} \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n-1}$;
(b) $a_{n}=-\frac{n+1}{n(n+3)} a_{n-1}$
(c) $y_{1}=a_{0} x^{2}\left(1-\frac{1}{2} x+\frac{3}{20} x^{2}-\frac{1}{30} x^{3}+\ldots\right) ; y_{2}=b_{0}\left(\frac{1}{x}-\frac{1}{2}\right)$
4. (a) $r_{1}=1, r_{2}=-1 ; y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+1} ; y_{2}=A y_{1} \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n-1}$;
(b) $a_{n}=\frac{1}{n(n+2)} a_{n-1}$
(c) $y_{1}=a_{0} \sum_{n=0}^{\infty} \frac{1}{(n!)(n+2)!} x^{n+1} ; y_{2}=3 y_{1} \ln (x)-b_{0} x^{-1}\left(1-x+\frac{1}{12} x^{3}+\frac{13}{960} x^{4}+\ldots\right)$
5. (a) $r_{1}=r_{2}=-2 ; y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n-2} ; y_{2}=y_{1} \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n-2}$;
(b) $a_{n}=-\frac{1}{n^{2}} a_{n-1}$
(c) $y_{1}=a_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}} x^{n-2} ; y_{2}=y_{1} \ln (x)+b_{0}\left(\frac{2}{x}-\frac{3}{4}+\frac{11}{108} x-\frac{25}{576} x^{2}+\ldots\right)$
6. (a) $r_{1}=r_{2}=2 ; y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+2} ; y_{2}=y_{1} \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n+2}$;
(b) $a_{n}=\frac{n+1}{n^{2}} a_{n-1}$
(c) $y_{1}=a_{0} \sum_{n=0}^{\infty} \frac{n+1}{n!} x^{n+2} ; y_{2}=y_{1} \ln (x)-b_{0} x^{3}\left(3+\frac{13}{4} x+\frac{31}{18} x^{2}+\frac{173}{288} x^{3}+\ldots\right)$
