Math 260 - Exam 2 Review

COVERAGE: The exam will cover the material discussed in lecture from Chapter 5, Sections 6.1-6.3, the differential operator, annihilators and Cauchy-Euler equations.

STUDYING: Here is an overview of the topics we have covered. You should be comfortable with all of the following terms below:

Chapter 5: General solution to 2nd order linear differential equations, Wronskian, a fundamental set of solutions to a DE, associated homogeneous differential equation, trial solution, particular solution, method of undetermined coefficients, reduction of order technique, variation-of-parameters method.

Topics Not in the Book: Linear differential operator, annihilator method, Cauchy-Euler equations
Chapter 6: Spring problems with and without damping, 2nd-order circuits.

THINGS TO BE ABLE TO DO:

- Determine if y_{1} and y_{2} are linearly independent
- Be able to find the general solution to any n-th order, linear, constant coefficient, homogeneous DE by finding roots of the characteristic equation. This also means you need to understand how to handle repeated roots and complex roots that may arise.
- If initial values are given, be able to solve an initial-value problem for a specific solution.
- Know the process for finding the general solution to an 2nd-order, linear, nonhomogeneous DE. How is the solution to the nonhomogeneous DE related to the solution to the corresponding homogeneous DE?
- Be able to use annihilators to find a particular solution to a nonhomogeneous DE.
- Solve a second order DE by making the substitution $v=d y / d x$
- Be able to apply the variation-of-parameters procedure to find a particular solution to a nonhomogeneous DE.
- Be able to solve Cauchy-Euler equations.
- Be able to solve any second-order linear DE given one solution to the associated homogeneous equation using the reduction of order technique.

Exam 2 Review Practice Problems:

1. (a) Write the differential equation, $y^{\prime \prime}+4 x y^{\prime}-6 x^{2} y=x^{2} \sin x$, as an operator equation and give the associated homogeneous DE.
(b) Write the $\mathrm{DE}\left(D^{2}+1\right)(D+3)(y)=e^{4 x}+\ln (2 x+1)$ in terms of the expressions $y, y^{\prime}, y^{\prime \prime}$, etc. Is this differential equation linear? Why or why not.
2. Find a general solution to each DE
(a) $\left(D^{2}+4\right)^{2}(D+1) y=0$
(b) $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$
3. Find the complementary function $y_{c}(x)$ and derive an appropriate trial solution for $y_{p}(x)$ for the given DE. Do not solve for the constants that arise in your trial solution.
(a) $(D+1)\left(D^{2}+1\right) y=4 x e^{x}$.
(b) $\left(D^{2}-2 D+2\right)^{3}(D-2)^{2}(D+4) y=e^{x} \cos x-3 e^{2 x}$.
4. Solve the DE, $y^{\prime \prime}+6 y^{\prime}+9 y=4 e^{-3 x}$, by using (a) the method of annihilators, and (b) the variation of parameters method.
5. Find the general solution to the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\frac{e^{-2 x}}{x^{2}}
$$

under the assumption that $x>0$.
6. Find the general solution to the differential equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}-12 y=x^{4}+5 x^{2}
$$

under the assumption that $x>0$.
7. Find the general solution to the differential equation

$$
x y^{\prime \prime}-(x+1) y^{\prime}+y=0
$$

Given that $y=e^{x}$ is one solution.
8. Consider the RLC circuit with $R=180 \Omega, C=1 / 280 F, L=20 H$, and applied voltage $E(t)=$ $10 \sin t$. Assuming no initial charge on the capacitor, but an initial current of 1 ampere. Determine the charge on the capacitor for $t>0$.
9. A mass of one kg stretches a spring 49 cm in equilibrium. It is attached to a dashpot that supplies a damping force of 4 N for each $\mathrm{m} / \mathrm{sec}$ of speed. Find the steady state component of its displacement if its subjected to an external force $F(t)=8 \sin 2 t-6 \cos 2 t \mathrm{~N}$.

Solutions to Exam 2 Review Practice Problems:

1. (a) $\left(D^{2}+4 x D-6 x^{2}\right) y=x^{2} \sin x$, and the associated homogeneous DE is $\left(D^{2}+4 x D-6 x^{2}\right) y=0$.
(b) $y^{\prime \prime \prime}+3 y^{\prime \prime}+y^{\prime}+3 y=e^{4 x}+\ln (2 x+1)$, and this differential equation IS LINEAR.
2. (a) $y(x)=c_{1} e^{-x}+c_{2} \cos 2 x+c_{3} \sin 2 x+c_{4} x \cos 2 x+c_{5} x \sin 2 x$
(b) $y(x)=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} x^{2} e^{-x}$
3. (a) $y_{c}(x)=c_{1} e^{-x}+c_{2} \cos x+c_{3} \sin x ; y_{p}(x)=A e^{x}+B x e^{x}$
(b) $y_{c}(x)=c_{1} e^{-4 x}+c_{2} e^{2 x}+c_{3} x e^{2 x}+c_{4} e^{x} \cos x+c_{5} e^{x} \sin x+c_{6} x e^{x} \cos x+c_{7} x e^{x} \sin x+c_{8} x^{2} e^{x} \cos x+$ $c_{9} x^{2} e^{x} \sin x ; y_{p}(x)=A x^{3} e^{x} \cos x+B x^{3} e^{x} \sin x+C x^{2} e^{2 x}$
4. $y(x)=c_{1} e^{-3 x}+c_{2} x e^{-3 x}+2 x^{2} e^{-3 x}$
5. $y(x)=e^{-2 x}\left(c_{1}+c_{2} x-\ln x\right)$
6. $y(x)=c_{1} x^{6}+c_{2} x^{-2}-\frac{1}{12} x^{4}-\frac{5}{16} x^{2}$
7. $y(x)=c_{1} e^{x}+c_{2}(x+1)$
8. $q^{\prime \prime}+9 q^{\prime}+14 q=\frac{1}{2} \sin t, \quad q(0)=0, q^{\prime}(0)=1 \Longrightarrow q(t)=\frac{1}{500}\left(110 e^{-2 t}-101 e^{-7 t}+13 \sin t-9 \cos t\right)$
9. $y^{\prime \prime}+4 y^{\prime}+20 y=8 \sin 2 t-6 \cos 2 t \Longrightarrow y_{p}=A \cos 2 t+B \sin 2 t$. Solve for A and B to get: $y_{p}=\frac{1}{4}(\sin 2 t-2 \cos 2 t)$ meters.
