Math 260 - Exam 3 Review

COVERAGE: The exam will cover the material discussed in lecture from chapters 7 and 8 .
STUDYING: Here is an overview of the topics we have covered. You should be comfortable with all of the following terms below:

Chapter 7: Power series, recursive sequence, ordinary point, singular point, regular singular point, Method of Frobenius

Chapter 8: Laplace transform, piecewise continuous function, exponential order, inverse Laplace transform, first shifting theorem, unit step function, second shifting theorem, convolution product, convolution integral, convolution theorem, impulse functions, Dirac δ function

THINGS TO BE ABLE TO DO:

- Determine two linearly independent power series solutions to a differential equation
- Determine the form of the solution using the the Method of Frobenius based on the roots of the indicial equation.
- Determine the Laplace transform of a given function from the definition and from a table of common Laplace transforms
- Determine the inverse Laplace transform of a given function
- Determine the Laplace transform of a given periodic function
- Use Laplace transforms to solve initial-value problems
- Apply the first shifting theorem to compute the Laplace transform of $e^{a t} f(t)$
- Use the first shifting theorem to compute the inverse Laplace transform of $F(s-a)$
- Sketch functions that involve the unit step function
- Express appropriate functions in terms of unit step functions
- Apply the second shifting theorem to compute inverse Laplace transforms that result in unit step functions
- Solve initial-value problems that involve unit step functions
- Compute $f * g$
- Use the convolution theorem to compute the Laplace transform of a convolution product
- Use the convolution theorem to compute the inverse Laplace transform of a product of functions
- Solve initial value problems involving the Dirac δ function.

Exam 3 Review Practice Problems:

1. Using the power series method, find the general solution to the differential equation.

$$
y^{\prime \prime}+x y^{\prime}+3 y=0
$$

2. Using the Method of Frobenius, find y_{1} and the form of y_{2}. Solve for a_{n} but not b_{n}.

$$
x^{2} y^{\prime \prime}+x(3+x) y^{\prime}+(1+3 x) y=0
$$

3. Use the definition to find the Laplace transform of $f(t)=t \sin 3 t$.
4. Find $\mathcal{L}[f]$.
(a) $f(t)=5 \cos 2 t-7 e^{-t}-3 t^{6}$
(b) $f(t)=e^{3 t} \cos 5 t-e^{-t} \sin 2 t$
(c) $f(t)=2(t-5) u(t-5)$
5. Find $\mathcal{L}^{-1}[F]$.
(a) $F(s)=\frac{4 s+5}{s^{2}-9}$
(b) $F(s)=\frac{s-2}{s^{2}+2 s+2}$
(c) $F(s)=\frac{2}{s\left(s^{2}+16\right)}$
6. Use the Laplace transform to solve the given initial-value problem.

$$
y^{\prime \prime}+9 y=8 \cos 3 t, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

7. Express f using the unit step function, and find $\mathcal{L}[f]$.

$$
f(t)= \begin{cases}2 & 0 \leq t<1 \\ 1-t & 1 \leq t<2 \\ 0 & t \geq 2\end{cases}
$$

8. Use the Laplace transform to solve the given initial-value problem.

$$
\begin{gathered}
y^{\prime}-3 y=f(t), \quad y(0)=2, \text { where } \\
f(t)= \begin{cases}\sin t & 0 \leq t<\pi / 2 \\
1 & t \geq \pi / 2\end{cases}
\end{gathered}
$$

9. Determine $\mathcal{L}^{-1}[F(s) G(s)]$ (a) using the convolution theorem, and (b) using partial fractions.

$$
F(s)=\frac{1}{s}, \quad G(s)=\frac{1}{s-2}
$$

10. Use the Laplace transform to solve the given initial-value problem.

$$
y^{\prime \prime}+2 y^{\prime}+y=\delta(t-4), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Answers to Exam 3 Review Practice Problems:

1. $y_{1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdots(2 n+1)}{(2 n)!} x^{2 n} ; y_{2}=\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{n}(n+1)!}{(2 n+1)!} x^{2 n+1}$
2. $y_{1}=x^{-1}\left[1+\sum_{n=1}^{\infty}(-1)^{n} \frac{n+1}{n!} x^{n}\right] ; y_{2}=y_{1} \ln x+\sum_{n=1}^{\infty} b_{n} x^{n-1}$
3. $\frac{6 s}{\left(s^{2}+9\right)^{2}}$
4. (a) $F(s)=\frac{5 s}{s^{2}+4}-\frac{7}{s+1}-\frac{2160}{s^{7}}$
(b) $F(s)=\frac{s-3}{(s-3)^{2}+25}-\frac{2}{(s+1)^{2}+4}$
(c) $F(s)=\frac{2 e^{-5 s}}{s^{2}}$
5. (a) $f(t)=4 \cosh (3 t)+\frac{5}{3} \sinh (3 t)$
(b) $f(t)=e^{-t} \cos t-3 e^{-t} \sin t$
(c) $f(t)=\frac{1}{8}(1-\cos 4 t)$
6. $y(t)=\cos 3 t+\frac{4}{3} t \sin 3 t$
7. $f(t)=2-(1+t) u(t-1)-(1-t) u(t-2) ; \frac{2}{s}-\frac{2 s+1}{s^{2}} e^{-s}+\frac{s+1}{s^{2}} e^{-2 s}$
8. $y(t)=\frac{1}{30}\left[63 e^{3 t}-3 \cos t-9 \sin t+u(t-\pi / 2)\left(e^{3(t-\pi / 2)}-10+9 \sin t+3 \cos t\right)\right]$
9. $\frac{1}{2}\left(e^{2 t}-1\right)$
10. $y(t)=u(t-4)\left[(t-4) e^{-(t-4)}\right]$
