For problems 1–10, answer true or false.

- 1. Given any three distinct points A, B, and C, they will be coplanar.
- 2. A right triangle can have an interior, obtuse angle.
- **3.** The statement, " $\overline{AB} \cong \overline{XY}$ and $\overline{XY} \cong \overline{MN}$ implies $\overline{AB} \cong \overline{MN}$," is an example of substitution.
- **4.** $\angle \text{TSV}$ in the figure shown can also be called $\angle \text{S}$
- 5. Points T and V are collinear
- **6.** " $\angle TSW + \angle WSV \cong \angle TSV$," is a valid statement.
- 7. "m \angle TSW = -15° ," violates the protractor postulate.

- 8. Angles of measure $(3x + 50)^{\circ}$ and $(40 3x)^{\circ}$ are complementary.
- 9. If the conditional statement, $P \rightarrow Q$ is false, then the contrapositive of this statement must be true.
- **10.** In \triangle DEF (not shown), if $\overline{\text{DE}} \cong \overline{\text{FD}}$ it must be either an isosceles triangle or an equilateral triangle.
- 11. Consider the statement and assume it to be true: "If I complete this review then I will pass the test."
 - (a) What is the hypothesis?
 - (b) State the converse, the inverse and the contrapositive.
 - (c) Which variations (if any) of this statement must be true (inverse, converse, and/or contrapositive)?
- 12. Draw a conclusion if possible.
 - 1. If the Padres win more than 100 games then they will win the division.
 - 2. The Padres won less than 100 games.

 $\mathbf{C}.$

13. Given M is the midpoint of \overline{AB} (not shown). If AB = 2x + 6 and MB = 3x - 9, find AM.

- **14.** Given: $\overline{\text{AD}} \parallel \overline{\text{BC}}; \text{m} \angle 1 = 60^{\circ}; \text{m} \angle 6 = 55^{\circ}$
 - Find: $m \angle 3$
- **15.** Given: $m \angle AMB = x + 2y$ $m \angle 3 = x$ $m \angle 4 = 2x - 2y$

Find: x and y

Problems 14 & 15

- 16. Given $m \parallel n$, cut by transversal *l*. Give a reason for each of the following statements.
 - (a) $\angle 4 \cong \angle 9$
 - (b) $\angle 3$ and $\angle 6$ are supplementary
 - (c) $m \angle 7 + m \angle 8 = m \angle 10$
 - (d) $\angle 4 \cong \angle 6$
- **17.** Given: $m \angle 1 = 112^{\circ}$ $\angle 8 \cong \angle 6$

Find: $m \angle 7$

- **18.** Using only a compass and a straightedge, perform the following constructions.
 - (a) Construct \angle DEF congruent to \angle ABC on a separate sheet of paper so that DE = 2AB and EF = 2BC.
 - (b) Bisect \angle DEF, label the bisector $\overrightarrow{\text{EX}}$.
 - (c) Construct a line perpendicular to $\overrightarrow{\text{EF}}$ passing through point X (creating a right triangle).
- **19.** Given: 3(x+2) = -18

Prove: x = -8

Problem 16 & 17

20. Write a paragraph proof for the statement: "If $\angle 1 \not\cong \angle 2$ then line *n* is not perpendicular to line *m*."

21. Given: $\angle 1$ is complementary to $\angle 3$ $\overline{AE} \parallel \overline{BD}$

 $\overline{SW} \parallel \overline{TV}$

Prove:

Answers

1. true **2.** false **3.** false **4.** false **5.** true **6.** false **7.** true **8.** true **9.** false **10.** true **11.** (a) "I complete this review" (b) Converse: "If I pass the test then I completed the review"; Inverse: "If I don't complete this review then I won't pass the test."; Contrapositive: "If I don't pass the test, I didn't complete the review." (c) Contrapositive **12.** no conclusion can be made **13.** AM = 9 **14.** 65° **15.** x = 60, y = 30 **16.** (a) corresponding angles (b) interior angles on the same side of the transversal (c) angle addition postulate (d) alternate interior angles **17.** 44°

19.	Statement	Reasoning
	1. $3(x+2) = -18$	1. Given
	1. $3(x+2) = -18$ 2. $3x + 6 = -18$	2. Distributive prop
	3. $3x = -24$	3. Addition prop of eq
	4. $x = -8$	4. Multiplication prop of eq

20. Assume $m \perp n$. By the definition of \perp , $\angle 1 \cong \angle 2$. But this contradicts our hypothesis, therefore line m must not be perpendicular to line n.

21.	Statement	Reasoning
	1. $\angle 1$ is complementary to $\angle 3$	1. Given
	2. m $\angle 1 + m \angle 3 = 90^{\circ}$	2. Def of complementary
	3. $\overline{AE} \parallel \overline{BD}$	3. Given
	4. m $\angle 1 = m\angle 2$	4. Corresponding angles
	5. m $\angle 1 + m \angle 2 = 90^{\circ}$	5. Substitution
	6. m∠1 + m∠2 + m∠C = 180°	6. Sum of the \angle s of a \triangle eq 180°
	7. $90^\circ + m \angle C = 180^\circ$	7. Substitution
	8. m $\angle C = 90^{\circ}$	8. Addition prop of eq
	9. $\angle C$ is a rt \angle	9. Def of rt \angle

22.	Statement	Reasoning
	1. $\angle W \cong \angle T$, $\overrightarrow{TS} \parallel \overrightarrow{VW}$ 2. $\angle W \cong \angle 1$ 3. $\angle T \cong \angle 1$	 Given Corresponding angles Transitive prop of ≅
	4. $\overline{\mathrm{SW}} \parallel \overline{\mathrm{TV}}$	4. If corresp $\angle s$ are \cong , then lines are \parallel