For problems 1-10, answer true or false.

1. Given any three distinct points A, B, and C , they will be coplanar.
2. A right triangle can have an interior, obtuse angle.
3. The statement, " $\overline{\mathrm{AB}} \cong \overline{\mathrm{XY}}$ and $\overline{\mathrm{XY}} \cong \overline{\mathrm{MN}}$ implies $\overline{\mathrm{AB}} \cong \overline{\mathrm{MN}}$," is an example of substitution.
4. $\angle \mathrm{TSV}$ in the figure shown can also be called $\angle \mathrm{S}$
5. Points T and V are collinear
6. " $\angle \mathrm{TSW}+\angle \mathrm{WSV} \cong \angle \mathrm{TSV}$," is a valid statement.
7. " $\mathrm{m} \angle \mathrm{TSW}=-15^{\circ}$," violates the protractor postulate.

Problems 4-7
8. Angles of measure $(3 x+50)^{\circ}$ and $(40-3 x)^{\circ}$ are complementary.
9. If the conditional statement, $\mathrm{P} \rightarrow \mathrm{Q}$ is false, then the contrapositive of this statement must be true.
10. In $\triangle \mathrm{DEF}$ (not shown), if $\overline{\mathrm{DE}} \cong \overline{\mathrm{FD}}$ it must be either an isosceles triangle or an equilateral triangle.
11. Consider the statement and assume it to be true: "If I complete this review then I will pass the test."
(a) What is the hypothesis?
(b) State the converse, the inverse and the contrapositive.
(c) Which variations (if any) of this statement must be true (inverse, converse, and/or contrapositive)?
12. Draw a conclusion if possible.

1. If the Padres win more than 100 games then they will win the division.
2. The Padres won less than 100 games.
C.
3. Given M is the midpoint of $\overline{\mathrm{AB}}$ (not shown). If $\mathrm{AB}=2 x+6$ and $\mathrm{MB}=3 x-9$, find AM .
4. Given: $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}} ; \mathrm{m} \angle 1=60^{\circ} ; \mathrm{m} \angle 6=55^{\circ}$

Find: $\quad \mathrm{m} \angle 3$
15. Given: $\mathrm{m} \angle \mathrm{AMB}=x+2 y$
$\mathrm{m} \angle 3=x$
$\mathrm{m} \angle 4=2 x-2 y$
Find: $\quad x$ and y

Problems 14 \& 15
16. Given $m \| n$, cut by transversal l. Give a reason for each of the following statements.
(a) $\angle 4 \cong \angle 9$
(b) $\angle 3$ and $\angle 6$ are supplementary
(c) $\mathrm{m} \angle 7+\mathrm{m} \angle 8=\mathrm{m} \angle 10$
(d) $\angle 4 \cong \angle 6$
17. Given: $\mathrm{m} \angle 1=112^{\circ}$

$$
\angle 8 \cong \angle 6
$$

Find: $\quad \mathrm{m} \angle 7$

Problem 16 \& 17
18. Using only a compass and a straightedge, perform the following constructions.
(a) Construct $\angle \mathrm{DEF}$ congruent to $\angle \mathrm{ABC}$ on a separate sheet of paper so that $\mathrm{DE}=2 \mathrm{AB}$ and $\mathrm{EF}=2 \mathrm{BC}$.
(b) Bisect $\angle \mathrm{DEF}$, label the bisector $\overrightarrow{\mathrm{EX}}$.
(c) Construct a line perpendicular to $\overrightarrow{\mathrm{EF}}$ passing
 through point X (creating a right triangle).
19. Given: $3(x+2)=-18$

Prove: $\quad x=-8$
21. Given: $\angle 1$ is complementary to $\angle 3$ $\overline{\mathrm{AE}} \| \overline{\mathrm{BD}}$

Prove: $\angle \mathrm{C}$ is a right angle

20. Write a paragraph proof for the statement: "If $\angle 1 \nsupseteq \angle 2$ then line n is not perpendicular to line m."

22. Given: $\angle \mathrm{W} \cong \angle \mathrm{T}$
$\overrightarrow{\mathrm{TS}} \| \overrightarrow{\mathrm{VW}}$
Prove: $\quad \overline{\mathrm{SW}} \| \overline{\mathrm{TV}}$

Answers

1. true
2. false
3. false
4. false
5. true
6. false
7. true
8. true 9. false
9. true 11. (a) "I complete this review" (b) Converse: "If I pass the test then I completed the review"; Inverse: "If I don't complete this review then I won't pass the test."; Contrapositive: "If I don't pass the test, I didn't complete the review." (c) Contrapositive 12. no conclusion can be made 13. AM = $9 \mathbf{1 4 .}$ $65^{\circ} \quad$ 15. $x=60, y=30 \quad$ 16. (a) corresponding angles (b) interior angles on the same side of the transversal (c) angle addition postulate (d) alternate interior angles 17. 44°
10.

Statement	Reasoning
1. $3(x+2)=-18$	1. Given
2. $3 x+6=-18$	2. Distributive prop
$3.3 x=-24$	3. Addition prop of eq
4. $x=-8$	4. Multiplication prop of eq

20. Assume $m \perp n$. By the definition of $\perp, \angle 1 \cong \angle 2$. But this contradicts our hypothesis, therefore line m must not be perpendicular to line n.
21.

Statement	Reasoning	
1. $\angle 1$ is complementary to $\angle 3$	1. Given	
2. $\mathrm{m} \angle 1+\mathrm{m} \angle 3=90^{\circ}$	2. Def of complementary	
3. $\overline{\mathrm{AE}} \\| \overline{\mathrm{BD}}$	3. Given	
4. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$	4. Corresponding angles	
5. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$	5. Substitution	
6. $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle \mathrm{C}=180^{\circ}$	6. Sum of the $\angle \mathrm{s}$ of a \triangle eq 180°	
7. $90^{\circ}+\mathrm{m} \angle \mathrm{C}=180^{\circ}$	7. Substitution	
8. $\mathrm{m} \angle \mathrm{C}=90^{\circ}$	8. Addition prop of eq	
9. $\angle \mathrm{C}$ is a rt \angle	9. Def of rt \angle	

22.

Statement	Reasoning		
1. $\angle \mathrm{W} \cong \angle \mathrm{T}, \overrightarrow{\mathrm{TS}} \\| \overrightarrow{\mathrm{VW}}$	1. Given		
2. $\angle \mathrm{W} \cong \angle 1$	2. Corresponding angles		
3. $\angle \mathrm{T} \cong \angle 1$	3. Transitive prop of \cong		
4. $\overline{\mathrm{SW}} \\| \overline{\mathrm{TV}}$	4. If corresp $\angle \mathrm{s}$ are \cong, then lines are $\\|$		

