Math 30
Exam 2 Review
Chapters 3 and 4

For problems 1-10, answer true or false.

1. Side-side-angle (SSA), angle-angle-angle (AAA), and angle-angle-side (AAS) are three conditions that are not valid reasons for proving congruent triangles.
2. The sum of the interior angles of a decagon (10 sides) is 1440°.
3. If a triangle has exactly two angles that are congruent, the triangle must be isosceles.
4. Using basic construction methods, a 20° angle can be constructed by trisecting a 60° angle.
5. It is possible to draw a triangle with sides that measure 11,17 , and 7 units.
6. In a parallelogram, the diagonals are perpendicular.
7. A kite is a quadrilateral.
8. A square is a parallelogram.
9. If one interior angle of an isosceles trapezoid is known, the other three angles can be found.
10. The diagonal of a rhombus separates it into two equilateral triangles.
11. In isosceles triangle $A B C$ (not shown) $m \angle A=38^{\circ}$. List all possible measures of $\angle B$.
12. Given: kite RSTV
$\mathrm{m} \angle \mathrm{RVT}=62^{\circ}$
$\mathrm{m} \angle \mathrm{RST}=86^{\circ}$

Find: $\quad \mathrm{m} \angle \mathrm{VRS}$
13. Given: kite RSTV
$\overline{\mathrm{RM}} \cong \overline{\mathrm{MS}}$
$\mathrm{RT}=12 \mathrm{in} ., \mathrm{VS}=18 \mathrm{in}$.

Find: The perimeter of RSTV

(rounded to nearest tenth)
14. In the pentagon shown, $\mathrm{m} \angle \mathrm{R}=\mathrm{m} \angle \mathrm{V}=\mathrm{m} \angle \mathrm{T}$, and $\mathrm{m} \angle \mathrm{Q}=\mathrm{m} \angle \mathrm{S}=96^{\circ}$. Find $\mathrm{m} \angle \mathrm{R}$.

15. In the figure shown, it is given that $\overline{\mathrm{AB}} \cong \overline{\mathrm{DC}}$ and $\overline{\mathrm{AD}} \cong \overline{\mathrm{BC}}$. What two statements lead to $\triangle \mathrm{DAB} \cong$ $\triangle \mathrm{BCD}$?
16. Given: parallelogram ABCD
$\mathrm{m} \angle 1=40^{\circ}$
$\mathrm{m} \angle 2=(5-x)^{\circ}$
$\mathrm{m} \angle \mathrm{C}=(15-5 x)^{\circ}$

Find: $\quad \mathrm{m} \angle \mathrm{ADC}$

Problem $15 \& 16$
17. Given: in $\triangle \mathrm{ABC}, \overline{\mathrm{CA}} \cong \overline{\mathrm{CB}}$
$\mathrm{E} \& \mathrm{D}$ are midpoints of $\overline{\mathrm{CA}} \& \overline{\mathrm{CB}}$ respectively
$\mathrm{CA}=2 x-4$
$\mathrm{AB}=2 x-5 y$
$\mathrm{CB}=3 y+8$
$\mathrm{ED}=2 y$
Find: $\quad x$ and y

18. Given $\triangle \mathrm{ABC} \cong \triangle \mathrm{XYZ}$ (not shown).
(a) What reason should be given to justify $\overline{\mathrm{BC}} \cong \overline{\mathrm{YZ}}$?
(b) Can we also say $\triangle B A C \cong \triangle X Y Z$?
(c) If $\mathrm{m} \angle \mathrm{A}=90^{\circ}$ and $\mathrm{m} \angle \mathrm{Y}=30^{\circ}$, what are $\mathrm{m} \angle \mathrm{B}, \mathrm{m} \angle \mathrm{C}$, and $\mathrm{m} \angle \mathrm{Z}$?
19. Given: Trapezoid $\mathrm{ABCD}, \overline{\mathrm{MN}}$ is the median

$$
\begin{aligned}
& \mathrm{AB}=7 \\
& \mathrm{MN}=9
\end{aligned}
$$

Find: DC

20. Without measuring, list the five line segments in quadrilateral ABCD in order of their length, starting with the longest.

21. The angle to the right measures 72°, use it for the following constructions
(a) Construct angles of measure $108^{\circ}, 36^{\circ}$, and 96°.
(b) Construct a regular pentagram

22. Given: ABCD is a parallelogram, $\overline{\mathrm{DX}}$ bisects $\angle \mathrm{ADC}$ and $\overline{\mathrm{CX}}$ bisects $\angle \mathrm{BCD}$

Prove: $\angle \mathrm{DXC}($ or $\angle 5)$ is a right angle

23. Given: $\overline{\mathrm{XM}} \perp \overline{\mathrm{ZY}}$
M is the midpoint of $\overline{Z Y}$
Prove: $\triangle \mathrm{XYZ}$ is isosceles

Exam 2 Review - Solutions

1. false 2. true 3. true 4. false 5. true 6. false 7. true 8. true 9. true $\mathbf{1 0}$. false 11. $38^{\circ}, 104^{\circ}$, and 71° 12. 106° 13. about 43.8 inches 14. 116° 15. $\overline{\mathrm{DB}} \cong \overline{\mathrm{DB}}$ by identity and $\triangle \mathrm{DAB} \cong \triangle \mathrm{BCD}$ by SSS. 16. 65° 17. $x=9, y=2 \quad$ 18. (a) $\mathrm{CPCTC} \quad$ (b) no (c) $30^{\circ}, 60^{\circ}, 60^{\circ}$
2. $\mathrm{DC}=11$ 20. $\mathrm{CD}, \mathrm{AD}, \mathrm{AC}, \mathrm{BC}, \mathrm{AB}$
