For problems 1-8, answer true or false.

1. The perpendicular-bisectors of the sides of a triangle are concurrent at a point that is equidistant from the vertices of the triangle.
2. If $\overline{\mathrm{DF}}$ is a diameter of $\odot \mathrm{O}$ and $\triangle \mathrm{DEF}$ is inscribed in $\odot \mathrm{O}$, then $\mathrm{m} \angle \mathrm{E}=90^{\circ}$.
3. If $\overline{\mathrm{AB}}$ is a diameter of $\odot \mathrm{Q}$ and $\overline{\mathrm{AB}}$ intersects chord $\overline{\mathrm{CD}}$, then $\overline{\mathrm{AB}} \perp \overline{\mathrm{CD}}$
4. If the hypotenuse of an isosceles right triangle measures $2 \sqrt{3}$, the measure of each leg will be $\sqrt{6}$.
5. If $\frac{a}{b}=\frac{c}{d}$ then $\frac{a}{b}=\frac{d}{c}$
6. If the sides of a triangle measure 20,21 , and 29 units, the triangle must be a right triangle.
7. All rectangles are similar.
8. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{CDE}$ then $\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{CD}}{\mathrm{DE}}$.
9. The measures of two supplementary angles have the ratio $2: 3$. What is the measure of the smaller angle?
10. Given: In $\triangle \mathrm{RST}, \overline{\mathrm{WV}} \| \overline{\mathrm{RS}}$

$$
\mathrm{m} \angle 1=132^{\circ}
$$

$$
\mathrm{m} \angle 2=78^{\circ}
$$

Find: $\quad \mathrm{m} \angle \mathrm{R}, \mathrm{m} \angle \mathrm{S}$, and $\mathrm{m} \angle \mathrm{T}$
11. Given: In $\triangle \mathrm{RST}, \overline{\mathrm{WV}} \| \overline{\mathrm{RS}}$
$\overline{\mathrm{TV}} \cong \overline{\mathrm{TR}}$
$\mathrm{WT}=9, \mathrm{TS}=16$
Find: RW

Problems 10 \& 11
12. In the kite shown, $\overline{\mathrm{AB}} \cong \overline{\mathrm{BD}} \cong \overline{\mathrm{AD}}$ and $\overline{\mathrm{DC}} \perp \overline{\mathrm{CB}}$. If $\mathrm{AM}=9$, find CB .

13. In the figure shown, which triangle(s) is similar to \triangle DGF?
14. Given: right $\triangle \mathrm{DEF}$ with altitude $\overline{\mathrm{FG}}$

$$
\begin{aligned}
& \overline{\mathrm{DE}}=20 \\
& \overline{\mathrm{FG}}=8
\end{aligned}
$$

Problems 13 83 14
15. A circle is divided into five congruent arcs at points A, B, C, D, and E (in that order). Find the measure of $\angle \mathrm{EAC}$.
16. Describe the locus of points in space that are a distance of 2 inches from a given line.
17. Given: $\odot \mathrm{O}$ with tangent $\overline{\mathrm{AB}}$

$$
\overline{\mathrm{AB}}=10
$$

$$
\overline{\mathrm{ED}}=15
$$

Find: $\quad \overline{\mathrm{AE}}$
18. Given: $\odot \mathrm{O}$ with tangents $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$
$\mathrm{m} \angle 1=20^{\circ}$
$\mathrm{m} \overparen{\mathrm{CD}}=85^{\circ}$
$\mathrm{m} \overparen{E B}=85^{\circ}$
Problems 17818

Find: $\quad \mathrm{mBD}$ and $\mathrm{m} \angle 2$
19. Given: Diameter $\overline{\mathrm{RS}}$ is perpendicular to $\overline{\mathrm{XY}}$
$\mathrm{MS}=4$
$\mathrm{XY}=12$

Find: QS

20. Given: $\overrightarrow{\mathrm{YM}}$ bisects $\angle \mathrm{XYZ}$
$\mathrm{XY}=14$
$Y Z=10$
$X Z=18$
Find: XM

21. The line segment below measures 2 inches. Construct a line segment that measures $2 \sqrt{3}$.

22. Construct the circumscribed circle about the triangle below.

23. Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$

Prove: $\quad \frac{A M}{D M}=\frac{B M}{C M}$

24. Given: $\overline{\mathrm{RT}}$ and $\overline{\mathrm{SV}}$ are diameters of $\odot \mathrm{P}$

Prove: RSTV is a rectangle

Exam 3 Review - Solutions

1. true 2. true 3. false 4. true 5. false 6. true 7. false 8. true 9. 72° 10. 78°, 48°, and 54° 11. 3 12. $3 \sqrt{6}$ 13. $\triangle \mathrm{DFE}$ and $\triangle \mathrm{FGE} \quad$ 14. $\overline{\mathrm{DG}}=4, \overline{\mathrm{DF}}=4 \sqrt{5} \quad$ 15. $72^{\circ} \quad$ 16. A cylinder with radius 2 inches that has infinite length 17.5 18. $\mathrm{m} \overparen{\mathrm{BD}}=125^{\circ}$ and $\mathrm{m} \angle 2=10^{\circ} \quad$ 19. 6.5
2. 10.5
3.

Statement	Reasoning	
1. $\overline{\mathrm{AB}} \\| \overline{\mathrm{CD}}$	1. Given	
2. $\angle \mathrm{A} \cong \angle \mathrm{D}$	2. alt interior angles	
3. $\angle \mathrm{AMB} \cong \angle \mathrm{DMC}$	3. vertical angles	
4. $\triangle \mathrm{AMB} \sim \triangle \mathrm{DMC}$	4. AA	
5. $\frac{A M}{D M}=\frac{B M}{C M}$	5. CSSTP	

24.

Statement	Reasoning
1. $\overline{\mathrm{RT}}$ and $\overline{\mathrm{SV}}$ are diameters of $\odot \mathrm{P}$	1. Given
2. $\angle \mathrm{APV} \cong \angle \mathrm{SPT}$	2. vertical angles
3. $\overparen{\mathrm{RV}} \cong \overparen{\mathrm{ST}}$	3. \cong central $\angle \mathrm{s}$ have $\cong \operatorname{arcs}$
$4 . \overline{\mathrm{RV}} \cong \overline{\mathrm{ST}}$	4. \cong arcs have \cong chords
5. $\angle \mathrm{RPS} \cong \angle \mathrm{TPV}$	5. vertical angles
6. $\overparen{\mathrm{RS}} \cong \overparen{\mathrm{TV}}$	6. \cong central \angle s have \cong arcs
$7 . \overline{\mathrm{RS}} \cong \overline{\mathrm{TV}}$	7. \cong arcs have \cong chords
8. RSTV is a parallelogram	8. Both pairs of opposite sides are \cong
9. $\angle \mathrm{RST}$ is a rt \angle	9. An \angle inscribed in a semicircle is a rt \angle
$10 . \mathrm{RSTV}$ is a rectangle	9. Def of a rectangle

