For problems 1-8, answer true or false.

- 1. If a polygon can be inscribed in a circle, then it must be a regular polygon.
- 2. The apothem of a square is always half the measure of each side.
- **3.** A kite with diagonals that measure 1 foot and 2 feet, must have the same area as a rhombus with diagonals that measure 18 inches and 16 inches.
- 4. If the radius of a circle is equal in measure to the apothem of a regular pentagon, the circle must have greater area.
- 5. The area of a triangle with sides that measure 6, 8, and 10, can be calculated by $A = \frac{1}{2}(6)(8)$.
- 6. If a prism and a pyramid have congruent bases and altitudes of the same length, the volume of the pyramid is 1/3 the volume of the prism.
- 7. A polyhedron with six faces and ten edges must have 6 vertices.
- 8. If two plane figures have equal areas, then they are congruent
- **9.** In \triangle ABC, medians $\overline{\text{AT}}$, $\overline{\text{BS}}$, and $\overline{\text{CR}}$ intersect at centroid M. If AM = 8, MS = 5, and CR = 10, find MT, BS, and CM.

- 10. A regular hexagon has an apothem that measures $6\sqrt{3}$ inches. Find the area.
- 11. A parallelogram has side that measure 5 cm and 8 cm, and the short diagonal measures 11 cm. Find the area of the parallelogram.

- 12. The area of a square is 200 cm^2 . Find the length of the radius.
- **13.** Home Depot sells carpet by the square yard. If a room is 1440 square feet, how many square yards of carpet will it take to cover the floor (not including waste)?

- **14.** Given: $\triangle ABC$ with $\overline{BC} \parallel \overline{MN}$ $\frac{AM}{AB} = \frac{2}{3}$
 - Find: The ratio of the area of $\triangle AMN$ to the area of $\triangle ABC$

- 15. Find area of a trapezoid with bases measuring 9 inches and 11 inches, and the altitude measuring 1 foot.
- **16.** Find the area of the shaded region in the figure.

17. In a pulley system, the centers of the pulleys are 20 inches apart. If the radius of each pulley measures 6 inches, how long is the belt used in the pulley system?

18. Find the area and perimeter of the sector shaded in the figure to the right.

19. Find the area and perimeter of the segment shaded in the figure to the right.

20. A piece is cut from a cylindrical block of cheese with the knife cutting along two radii. The radius is 3 inches and the height is 4 inches. If the piece represents 1/12th of the original block of cheese, find the volume and surface area of this piece.

21. A pyramid with altitude 10 meters has a base in the shape of a regular pentagon with apothem measuring 4 meters and each side measuring 6 meters. Find the volume and area of the pyramid.

- **22.** The inside of a vase is in the shape of a cone with radius 3 inches and altitude 14 inches. If there are 0.554 ounces in a cubic inch, how many ounces of water will the vase hold? Round your answer to 1 decimal place.
- 23. An industrial tank is to be built in the shape of a cylinder of radius 2 feet and a height of 4 feet. If the material for the bottom (one of the bases) costs 50¢ per square foot, and the material for the sides and the top costs 25¢ per square foot, what is the total cost of manufacturing the tank (rounded to the nearest cent)? How much fuel will the tank hold?
- **24.** Find the volume of a sphere that is 3 meters tall.

Solutions

1. false **2.** true **3.** true **4.** false **5.** true **6.** true **7.** true **8.** false **9.** MT = 4, BS = 15, $CM = \frac{20}{3}$ **10.** $216\sqrt{3}$ in² **11.** $8\sqrt{21}$ cm² **12.** 10 cm **13.** 160 yd² **14.** $\frac{4}{9}$ **15.** 120 in² **16.** 36 sq. units **17.** $(40 + 12\pi)$ in. **18.** $A = \frac{125}{12}\pi$ ft²; $P = (10 + \frac{25}{6}\pi)$ ft **19.** $A = (\frac{50}{3}\pi - 25\sqrt{3})$ in²; $P = (10 + \frac{10}{3}\pi)$ in **20.** $V = 3\pi$ in³; $A = (\frac{7}{2}\pi + 24)$ in² **21.** V = 200 m³; $A = (60 + 30\sqrt{29})$ m² **22.** 73.1 oz **23.** cost: \$21.99; volume: 16π ft³ **24.** $\frac{9}{2}\pi$ m³