
Midterm 2 practice problems
CS 133

October 1 , 2 18

1 Binary search

▶ Write a binary search over vectors, iteratively (i.e., using a loop), with the following prototype:

int binary_search(const vector<int>& vs, int target);

int binary_search(const vector<int>& vs, int target) {
int low = 0, high = vs.size() - 1;
while(low <= high) {
int mid = (high - low) / 2 + low;
if(vs[mid] == target)

return mid;
else if(target < vs[mid])

high = mid-1;
else

low = mid+1;
}

return -1; // Not found
}

▶ Write a binary search over vectors, recursively, with the following prototype:

int binary_search(const vector<int>& vs, int target, int start, int end);

You can assume that this will be called with start = 0 and end = vs.size()-1.

int binary_search(const vector<int>& vs, int target, int start, int end) {
if(begin > end)
return -1; // Not found

else {
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int mid = (end - begin) / 2 + begin;
if(vs[mid] == target)

return mid;
else if(target < vs[mid])

return binary_search(vs, target, start, mid-1);
else

return binary_search(vs, target, mid+2, end);
}

}

▶ Write a binary search over arrays, iteratively, with the following prototype (returning nullptr if
the target element is not found):

int* binary_search(int* begin, int* end, int target);

int* binary_search(int* begin, int* end, int target) {
while(begin <= end) {
int* mid = (end - begin) / 2 + begin;
if(*mid == target)

return mid;
else if(target < *mid)

end = mid - 1;
else

begin = mid + 1;
}

return nullptr; // Not found
}

▶ Write a binary search over arrays, recursively, with the following prototype (returning nullptr if
the target element is not found):

int* binary_search(int* begin, int* end, int target);

int* binary_search(int* begin, int* end, int target) {
if(begin > end)
return nullptr;

else {
int* mid = (end - begin) / 2 + begin;
if(target == *mid)

return mid;
else if(target < *mid)

return binary_search(begin, mid-1, target);
else
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return binary_search(mid+1, end, target);
}

}

▶ Assume that we run a binary search over a vector of size 100. What is the maximum number of
steps (i.e., loop iterations or recursive calls) that could possibly be required for this input?

It should be approx. log2(100) ≈ 7.

2 Sorting

▶ Write selection sort, iteratively. (Find the smallest element, move it to the beginning. Repeat until
there are no unsorted elements left.)

void sort(vector<int>& v) {
for(int i = 0; i < v.size(); ++i) {
int s = i;
for(int j = i; j < v.size(); ++j)

if(v[j] < v[s])
s = j;

std::swap(v[i], v[s]);
}

}

▶ Write selection sort, recursively. Use the following prototype:

void selection_sort(int* begin, int* end);

(To do this, after finding the minimum, swap it with *begin and then recurse with begin + 1. The base
case is when begin >= end.)

void selection_sort(int* begin, int* end) {
if(begin >= end)
return; // Base case

int* s = begin;
for(int* i = begin; i < end; ++i)
if(*i < *s)

s = i;

std::swap(*begin, *s);
selection_sort(begin + 1, end);

}
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▶ Write insertion sort, iteratively. (For each element, insert it into an ever-growing sorted array.
Repeat until all elements have been processed.)

void sort(vector<int>& vs) {
for(int i = 1; i < vs.size(); ++i) {

for(int j = i; j > 0 && v[j] < v[j-1]; --j)
std::swap(v[j], v[j-1]);

}
}

▶ Write bubble sort, iteratively. (Compare adjacent pairs of elements, swapping if they are out of
order. After one pass, the largest element will have “bubbled” up to the end of the array. Repeat with
remaining elements until everything is sorted.)

void sort(vector<int>& vs) {
for(int i = 0; i < vs.size(); ++i) {
bool swapped = false;
for(int j = 0; j < vs.size() - i - 1; ++j)

if(v[j] > v[j+1]) {
std::swap(v[j], v[j+1]);
swapped = true;

}

if(!swapped)
return;

}
}

▶ Write the merge function that underlies the Mergesort algorithm. Use the following prototype:

void merge(vector<int> input, int mid, vector<int>& output);

You may assume that output.size() == input.size() initially.

void merge(vector<int> input, int mid, vector<int>& output) {
int i = 0, j = mid, k = 0;
while(i < mid && j < a.size()) {
if(input[i] < input[j])

output[k++] = input[i++];
else

output[k++] = input[j++];
}
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while(i < mid) output[k++] = input[i++];
while(j < input.size()) output[k++] = input[j++];

}

▶ Write the partition function that underlies the Quicksort algorithm.

int partition(vector<int>& v) {
int p = ...; // Choose pivot

int i = -1;
int j = v.size();

while(true) {
do

i++;
while(v[i] < v[p]);

do
j--;

while(v[j] > v[p]);

if(i >= j)
return j + 1;

std::swap(v[i], v[j]);
}

}

▶ Why is the choice of the pivot important in Quicksort? Why are the first and last elements of the
input particular bad choices for the pivot?

The location of the pivot determines how balanced the two sides of the split are in the two recursive
calls. Ideally, the sizes of the two subsequences to be recursively sorted should be equal, so that we get
O(log n) performance. If we pick the first/last element and the sequence is already sorted, then each
recursive step, instead of reducing the size by half, only reduces it by 1, leading toO(n2) performance.

3 Binary search trees

For any problems that need it, you can assume the following defintion of node:

struct node {
int key;
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node* left;
node* right;
node* parent;

}

▶ State the binary search tree order property.

Every node’s keymust be greater than all its left-descendants’ keys, and less than all its right-descendants’
keys.

▶ For a binary search tree containing n elements, what is the best case runtime complexity of a find
operation? What is the worst case complexity? When do these occur?

O(log n) and O(n) respectively. The first occurs when the tree is balanced, the second when it is
degenerate. (You could say that the best case is when the node to be found is the root, in which case
it is O(1), but assuming we don’t know anything about what we’re looking for, it’s O(log n).

▶ The worst-case unbalanced binary search tree is equivalent to a linked list. Write a sequence of 10
integer values that, when inserted into an empty tree using the standard insert function, will create
such an unbalanced tree.

1 2 3 4 5 6 7 8 9 10

inserted in that order.
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▶ Draw the tree that will result from inserting the following elements into an empty tree, using the
standard (no rebalancing) insert function.

1 2 7 3 0 5 − 4

(Our binary search trees never dealt with duplicates, so the second is a typo onmy part. I’ve removed
it.)

1
/ \
0 2

/ \
-4 7

/
3
\
5

▶ Insert the above into an AVL tree.

2
/ \

0 5
/ \ / \

-4 1 3 7

▶ Insert the above into a splay tree.

-4
\
0
\
5

/ \
3 7
/

1
\
2

▶ Here is a binary search tree:



5

3

1 4

7

6 8

Draw the tree that will result from deleting 5 from the tree, using the standard (no rebalancing) remove
function.

The problem doesn’t say whether to use the predecessor or successor, but both are equally easy. I’ll
assume the predecessor.

4
/ \

3 7
/ / \
1 6 8

If you used the successor, then the root would be 6 (and the existing 6 node would be missing).

▶ Starting from the above tree, draw the tree that will result if we perform a rotation at node 3.

3
/ \
1 5

/ \
4 7

/ \
6 8

▶ Starting from the above tree, draw the tree that will result if we perform a rotate at node .

7
/ \

5 8
/ \
3 6

/ \
1 4

▶ Write a struct node definition for a binary search tree that can act as a map from strings to floats.
That is, the keys are strings and the values are floats. (You can omit the parent pointer.)
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struct node {
string key;
float value;
node* left;
node* right;

};

▶ Given a binary search tree, how do we find the largest element? Sketch a function

node* largest(node* root);

that would do so.

Go all the way to the right.

node* largest(node* root) {
while(root && root->right != nullptr)
root = root->right;

return root;
}

▶ Given the above binary search tree, list the elements as they would be processed in an inorder,
preorder, and postorder traversal:

Inorder: 1 3 4 5 6 8

Preorder: 5 3 1 4 6 8

Postorder: 1 4 3 6 8 5

Levelorder: 5 3 1 4 6 8

4 Binary heaps

▶ State the heap order property, for max-heaps.

Every node in the heap must be greater than both its children.

▶ Does the following tree represent a valid max heap? If not, why not?

7
/ \
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5 6
/ \ \
3 4 1

No; heaps must be complete binary trees (last row should be filled in from left to right). It does have
the heap order property, however.

▶ Draw the heap that would result from inserting the following elements in left-to-right order into
an empty max-heap.

1 2 7 3 0 5 4

Again, the duplicated is a typo on my part.

7
/ \

3 5
/ \ / \
1 0 2 4

▶ Here is a max heap:

7
/ \

5 6
/ \ / \

1 3 2 4

Draw the heap that would result after a single extract operation.

6
/ \
5 4

/ \ /
1 3 2

▶ Given a node in a heap with an array-based representation at index n (1-based indexing), what is
the formula for the parent of n? For the left and right children?

Parent: n
2

Left: 2n

Right 2n+ 1

▶ How can we use a max heap to sort a sequence of values? Sketch the Heapsort algorithm.
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void heapsort(vector<int>& v) {
minheap h;

h.build_heap(v); // Build heap, takes O(n) time

for(int i = 0; i < v.size(); ++i)
v[i] = h.extract(); // extract minimum

}
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