
Midterm 3 practice problems
CS 133

July 1, 2022

1 Hash functions and hash tables

▶ What are the two good hash methods we discussed, and how do they work?

• Remainder: use Horner’s method to treat the string as a (big) base-256 number, and
then take that modulo m, the hash-table size.

• Multiplicative: multiply the output of Horner’s method by A, a floating-point constant,
take the fractional part, multiply by m, and finally round down.

▶ What are the properties that a hash function should have?

• Deterministic

• Uniform distribution

• Avalanche Effect

• Low probability of collision

▶ Why is using string length, or the first character of a string, bad choices for hash func-
tions?

Because it will result in a lot of collisions and is highly non-uniform. All strings with the same
first char, same length, will hash to the same value.

▶ Write the remainder hash function for strings, using a hash size of m.

string s =

int h = 0;
for(int i = 0; i < s.length(); i)

h = (256 * h + s[i]) % m;

1



▶ Write the multiplicative hash function, using an arbitrary predefined constant A and a
hash size of m.

string s =
float fh = 0;
for(int i = 0; i < s.length(); i)

fh = fmod(A * fh * 256 + A * s[i], 1);

int h = int(fh * m);

▶ How does the collision resolution method chaining work?

By storing a linked-list in each hash-table entry. Collisions result in new elements being
added to the front of the list.

▶ How does the collision resolution method probing work, and what are the three probe
sequences we discussed.

By searching for another empty location in the table when a collision occurs. The three probe
sequences are

• Linear: search the next location (i.e., probe sequence is hash(s)+iwhere i is incremented
every time we hit a full location).

• Quadratic: search hash(s) + a ∗ i + b ∗ i2 for some constants a and b (not all constants
work!).

• Double-hashing: use two hash functions to get hash1(s) + hash2(s) ∗ i. The “best” open
addressing method.

▶ Assuming remainder hashing with m = 9, insert the following values into a hash table
using chaining:

19, 28, 38, 47, 83

0
1 27,19
2 83,47,38
3
4
5
6
7
8

2



▶ Assuming remainder hashing with m = 9, insert the previous values into a hash table
using open addressing, with linear probing.

0
1 19
2 28
3 38
4 47
5 83
6
7
8

▶ What is the load factor α of the above table, after inserting the values?

α = 5
9

▶ What is the problem with linear probing?

It leads to clustering: groups of full table-entries. Any value that hashes into the cluster will
have to search all the way to the end of the cluster to find an empty space (slow) and will
also grow the cluster, making future collisions that much worse.

2 More trees: Binary Heaps and Disjoint Sets

▶ Draw the heap that would result from inserting the following values, using the standard
insert(x) heap function:

34 13 56 23 12 87 24

Solution:

87
/ \

23 56
/ \ / \

13 12 34 24

▶ Perform one extract_max() operation on the heap resulting from the previous problem and
draw the result.

Solution:

3



56
/ \

23 34
/ \ /

13 12 24

▶ Draw the heap that would result from using the BuildHeap algorithm to build a heap out of
the following values:

34 13 56 23 12 87 24

Solution:

87
/ \

23 56
/ \ / \

13 12 34 24

In this case, the result is the same as for successive inserts, but this is not always the case.

▶ Suppose we want to build a heap for employee data, where the heap is organized around
employee years of service (i.e., employees who have worked for the company longer have
higher priority).

class emp_heap {
public:

struct employee
{

string name;
string dept;
int years;

};
⋮

private:
void fix_up(int i);

vector<employee> heap;
};

Write the implementation of fix_up for this heap class.

Solution:

4



void emp_heap fix_up(int i)
{

while(i > 1 and heap[i].years > heap[i/2].years) {
swap(heap[i], heap[i/2]);
i /= 2;

}
}

▶ In an optimized disjoint set, path compression is performed in the rep() function. What if,
instead, we performed path compression on all nodes at once? Recall that path compression
means replacing a node’s parentwith the root of its tree, so that all a root node’s descendants
become direct children.

This class uses a vector<int> parents to store the parents of each node (nodes don’t actually
exist). I.e., parents[i] records the index of i’s parent, or -1 if i is a root.

class disjoint_set {
public:

disjoint_set(int n)
{

parents.resize(n);
for(int i = 0; i < n; i)

parents[i] = -1; // Everything is a root
}

void compress_all();

private:
vector<int> parents;

};

Write the definition of the compress_all function, which should perform path compression on
all nodes in the disjoint set.

Solution:

void disjoint_set compress_all()
{

// For each element i
for(int i = 0; i < n; i) {

// Find i's root
int r = i;
while(parents[r] -1)

r = parents[r];

5



// Compress i
parents[i] = r;

}
}

▶ In a disjoint set with merge-by-rank, when merging two trees, we make the tree with
the smaller rank an child of the larger-ranked tree (where rank is an approximation of the
size/height of the tree). Why? Why is it better to make the larger tree the root, and the
smaller the child? Give an example of two trees where merge-by-size produces a better
outcome than the opposite.

Solution: The complexity of rep is based on the height of the tree in question, so merge-by-
rank is an attempt to control the heights of the resulting trees. (Why use the approximation
“rank” instead of actual tree height? Because with path compression, the tree heights are
constantly changing, and would need to be contintually updated.) The height of a tree is the
maximum of the heights of all of its children, plus 1, so if we use the taller tree as a child, it
will potentially be larger than the largest existing child, increasing the overall height.

Example:

a e e
/ \ / \
b f a f

/ merge with (h=2) gives /
c b

/ /
d c
(h=4) /

d (h=5)

if we use the smaller tree as the parent, but if we use the larger, we get

a
/ \
b e

/ \
c f

/
d (h=4)

Hence, merge-by-height (rank) produces shorter trees.

▶ For a disjoint set without path compression or merge-by-rank, what is the worst-case
big-O complexity of rep and merge, where n = the number of elements in the disjoint set?

Solution: If all elements are in the same set in a single ”chain” (degenerate tree), then the
complexity of both will be O(n).

6


