
Midterm 3 practice problems
CS 133

July 1, 2022

1 Hash functions and hash tables

▶ What are the two good hash methods we discussed, and how do they work?

▶ What are the properties that a hash function should have?

▶ Why is using string length, or the first character of a string, bad choices for hash func-
tions?

▶ Write the remainder hash function for strings.

▶ Write the multiplicative hash function (you can assume that the remainder hash func-
tion is already implemented as remainder_hash, and just use an undefined constant A as the
multiplicative constant).

▶ How does the collision resolution method chaining work?

▶ How does the collision resolution method open addressing work, and what are the three
probe sequences we discussed.

▶ Assuming remainder hashing with m = 9, insert the following values into a hash table
using chaining:

19, 28, 38, 47, 83

▶ Assuming remainder hashing with m = 9, insert the previous values into a hash table
using open addressing, with linear probing.

▶ What is the load factor α of the above table, after inserting the values?

▶ What is the problem with linear probing?

1



2 More trees: Binary Heaps and Disjoint Sets

Unless stated otherwise, heap means max-heap.

▶ Draw the heap that would result from inserting the following values, using the standard
insert(x) heap function:

34 13 56 23 12 87 24

▶ Perform one extract_max() operation on the heap resulting from the previous problem
and draw the result.

▶ Draw the heap that would result from using the BuildHeap algorithm to build a heap out
of the following values:

34 13 56 23 12 87 24

▶ Suppose we want to build a heap for employee data, where the heap is organized around
employee years of service (i.e., employees who have worked for the company longer have
higher priority).

class emp_heap {
public:
struct employee
{

string name;
string dept;
int years;

};
⋮

private:
void fix_up(int i);

vector<employee> heap;
};

Write the implementation of fix_up for this heap class.

void emp_heap fix_up(int i)
{

// Your code here

2



▶ In an optimized disjoint set, path compression is performed in the rep() function. What if,
instead, we performed path compression on all nodes at once? Recall that path compression
means replacing a node’s parentwith the root of its tree, so that all a root node’s descendants
become direct children.

This class uses a vector<int> parents to store the parents of each node (nodes don’t actually
exist). I.e., parents[i] records the index of i’s parent, or -1 if i is a root.

class disjoint_set {
public:
disjoint_set(int n)
{

parents.resize(n);
for(int i = 0; i < n; i)

parents[i] = -1; // Everything is a root
}

void compress_all();

private:
vector<int> parents;

};

Write the definition of the compress_all function, which should perform path compression on
all nodes in the disjoint set.

▶ In a disjoint set with merge-by-rank, when merging two trees, we make the tree with
the smaller rank an child of the larger-ranked tree (where rank is an approximation of the
size/height of the tree). Why? Why is it better to make the larger tree the root, and the
smaller the child? Give an example of two trees where merge-by-size produces a better
outcome than the opposite.

▶ For a disjoint set without path compression or merge-by-rank, what is the worst-case
big-O complexity of rep and merge, where n = the number of elements in the disjoint set?

3


