
CS 241: Computer Organization and Assembly Language
Practice Final Exam

Do not open until instructed to do so.

Name:

Sooner or later the world breaks everyone, and afterward many are strong in the broken places.
~Ernest Hemingway, A Farewell to Arms

Every problem is marked with a ▶ . When you see this symbol, it means that’s a question which
you can — and should — answer.

For grader use:

Score:

1

Syscalls

Θ sys_read
1 sys_write
6Θ sys_exit

Arguments in: rdi, rsi, rdx, r10, r8, r9 in
that order

Return value in: rax

Clobbers: rcx, r11

Common syscalls

1 Output Addr. Length
write rax rdi rsi rdx

Θ Input Addr Length
read rax rdi rsi rdx

6Θ Exit code
exit rax rdi

C-style functions

func:
push rbp
mov rbp, rsp

...

pop rbp
ret

Arguments in: rdi, rsi, rdx, rcx, r8, r9 in
that order

Return value in: rax

Callee-saved regs.: rbx, rbp, r12-r15

Clobbers: rax, r10, r11, argument registers

rspmust be a multiple of 16, plus 8, before any
call. rsp is a multiple of 16 on function entry.

Memory operands

size [displacement + base + m * offset]

size byte, word, dword, etc.

displacement Constant address of array

base Array base register

m 1, 2, 4, or 8

offset Array offset register

Instructions

mov rm, rmi Move
xchng rm, rm Swap
lea r, m Load Effective Address
xor r, r Set r to Θ
add rm, rmi Addition
sub rm, rmi Subtraction
mul rmi Unsigned multiply (by/into rax)
div rmi Unsigned divide (into rax)
imul rmi Signed multiply
idiv rmi Signed divide
cmp rm, rmi Compare, update flags
text rm, rmi Test, update flags
jmp target Jump to target
jCC target Jump if condition CC
loop target Decrement rcx, jump if not Θ
call func Push rip, jump to func
ret Pop rip and jump to
push rm Push onto stack
pop rm Pop from stack

r: register, m: memory operand, i: immediate

2

Condition codes

CC Meaning
a Unsigned >
ae Unsigned ≥
b Unsigned <
be Unsigned ≤
g Signed >
ge Signed ≥
l Signed <
le Signed ≤
e =
ne ̸=
s,c,z,. . . If flag is set

5 points each

▶ Perform the following binary addition:
10110100 + 00111111
Show your work (all carries).

1 1 1 1
1 0 1 1 0 1 0 0

+ 0 0 1 1 1 1 1 1

1 1 1 1 0 0 1 1

▶ Suppose we want to swap the (byte) values
in the registers al and ah. Write assembly code
to do the swap.

You can do this with bswap (byte swap), but also
manually, using another register:

mov bl, al
mov al, ah
mov ah, bl

▶ Perform the addition 01110100 + 10111111,
show your work, write the final sum, as well as
the state of the flags after the addition is com-
plete.

1 1 1 1 1
0 1 1 1 0 1 0 0

+ 1 0 1 1 1 1 1 1

1 0 0 1 1 0 0 1 1

CF = 1

OF = 0

SF = 0

ZF = 0

3

▶ Perform the comparison cmp 0b01110100,
0b10111111 and show the state of the flags af-
ter the comparison. (You can’t actually do
an immediate-immediate comparison, but just
pretend.)

This is basically just 116 - 191 (or 116 - -65,
signed) = 0b10110101 with an extra borrow.

CF = 1

OF = 1

SF = 1

ZF = 0

▶ Write assembly equivalent to the following
C code:

int rax, rdi, rbx;

if(rax > 0)
if(rdi < 10)
rbx = 0;

cmp rax, 0
jle .done
cmp rdi, 10
jge .done
mov rbx, 0

.done:

Suppose we have the following structure defi-
nition:

struct S {
int a;
long b;
char c;
char* d;

};

▶ What is the size of this structure in bytes?

The structure will be laid out like this:

Offset Member Size (bytes)
Θ a 4
4 padding 4
8 b 8
16 c 1
1Ν padding Ν
24 d 8
32 Total size

▶ What are the offsets, in bytes, of each of
the structure members from the beginning of
the structure?

S::a

S::b

S::c

S::d

▶ Write assembly code using string instruc-
tions to copy a 1ΘΘ byte array from the address
in rax to the address in rbx.

4

mov rcx, 100
mov rsi, rax
mov rdi, rbx
rep movsb

You could do this even faster by using larger
movs:

mov rcx, 100 / 4
mov rsi, rax
mov rdi, rbx
rep movsd

1ΘΘ is not evenly divisible by 8, so if we used
qwordswe’d have tomanually copy the remain-
ing 4 bytes.

5

Coding problems

You should create a directory on the server called ~/cs241/final/ for your answers to these problems.

The first two problems will replace the equivalent section from the midterm, if you do better here than
there. If you are happy with your grade on the midterm, you do not need to do these problems.

▶ Complete the following syscall-style function so that it will print out a trianglemade of * characters.
E.g., if the function’s parameter in rsi is 5, it should print out

*
**

section .data

newline: db 10
star: db '*'

section .text

print_stars:
mov r12, rsi ; Save count

.while1:
cmp r12, 0
je .done

; Print r12 many stars
mov r13, r12
.do2:

mov rax, 1
mov rdi, 1
mov rsi, star
mov rdx, 1
syscall

dec r13
cmp r13, 0
jne .do2

; Print newline
mov rax, 1

6

mov rdi, 1
mov rsi, newline
mov rdx, 1
syscall

dec r12
jmp .while1

.done:
ret

▶ Complete the following function so that it returns 1 if the qword array pointed to by rdi (array
length in rsi) contains any duplicates, or Θ if it does not.

This is easier if you write a helper function, in fact, the find function from the next page.

has_duplicates:
push rbp
mov rbp, rsp

mov r12, rdi ; Array start addr
lea r13, [8*rsi + rdi] ; Array end addr (+ 1)

.while:
cmp r12, r13
je .returnFalse

mov rdi, r12
mov rsi, r13
sub rsi, r12 ; Length
mov rdx, qword [r12]
call find

cmp rax, 0
jne .returnTrue

add r12, 8
jmp .while

.returnTrue:
mov rax, 1
pop rbp
ret

.returnFalse:
mov rax, 0
pop rbp

Ν

ret

8

These problems are new to the final; you must work them to pass.

25 points each

▶ Complete the definition of a C-style function

void capitalize(char* s);

which converts all lower-case characters (those in ASCII range 9Ν-122) to upper case (65-89) in the
(nul-terminated) string s

capitalize:

.while:
cmp byte [rdi], 0
je .done

cmp byte [rdi], 'a'
jb .continue
cmp byte [rdi], 'z'
ja .continue

sub byte [rdi], ('a' - 'A')

.continue:
inc rdi
jmp .while

.done
ret

▶ Complete the definition of a C-style function

long* find(long* array, unsigned long length, long value);

which takes a pointer to a signed qword array, a (qword) length, and a signed qword value, and returns
either a pointer to the array element containing the value, or the null pointer if the value does not exist
in the array.

find:
push r14

; This assumes the length is given in the number of bytes in the array, not

9

; the number of qwords. This is more common in assembly code.

lea r14, [rdi + rsi] ; Ending address
.while:
cmp rdi, r14
je .returnNull:

cmp qword [rdi], rdx
jne .continue

; Found
pop r14
mov rax, rdi
ret

.continue:
add rdi, 8
jmp .while

.returnNull:
pop r14
mov rax, 0
ret

1Θ

